pset4-sol

September 7, 2017

1 18.06 Pset 4 Solutions

1.1 Problem 1

(Similar to Strang, section 3.2, problem 49.)
We showed in class that $C(A B) \subseteq C(A)$. Since the dimension of the column space is the rank, and a subspace always has a dimension \leq the dimensionality of the enclosing space, this means that $\operatorname{rank}(A B) \leq$ $\operatorname{rank}(A)$.

Using a similar reasoning, show that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$. Hint: consider the transpose $(A B)^{T}=B^{T} A^{T}$.

1.1.1 Solution

We are use the fact that A and A^{T} have the same rank. Then

$$
\left.\operatorname{rank}(A B)=\operatorname{rank}\left((A B)^{T}\right)\right)=\operatorname{rank}\left(B^{T} A^{T}\right) \leq \operatorname{rank}\left(B^{T}\right)=\operatorname{rank}(B)
$$

where $\operatorname{rank}\left(B^{T} A^{T}\right) \leq \operatorname{rank}\left(B^{T}\right)$ is follows from $\operatorname{rank}(C D) \leq \operatorname{rank}(C)$ above (changing the letters for clarity).

1.2 Problem 2

(Similar to Strang, section 3.4, problem 26 and 30.)
Find a basis (and the dimension) for each of these subspaces of 3×3 matrices:

- All diagonal matrices
- All symmetric matrices $\left(A^{T}=A\right)$.
- All skew-symmetric (anti-symmetric) matrices $\left(A^{T}=-A\right)$.
- All matrices whose nullspace contains the vector $(2,1,-1)$.

1.2.1 Solution

Diagonal matrices Every diagonal matrix is of the form $\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$ and so can be written as a linear combination of the matrices

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since this system of generators is clearly minimal (none of these matrices is a linear combination of the others), this is a basis and the dimension of the space of diagonal matrices is 3 .

Symmetric matrices Every symmetric matrix is of the form

$$
\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)
$$

and so can be written as a linear combination of

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Again, since no matrix here is a linear combination of the others, this is a basis and the dimension of the space of symmetric matrices is 6 .

Antisymmetric matrices Every antisymmetric matrix is of the form

$$
\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)
$$

and so can be written as a linear combination of

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

Since these matrices form again a minimal set of generators, they are a basis. So the dimension of the space of antisymmetric matrices is 3 .

Matrices such that $(2,1,-1) \in N(A)$ A matrix A has $(2,1,-1)$ in its nullspace if and only if

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 a+b-c \\
2 d+e-f \\
2 g-h+i
\end{array}\right)=0
$$

It is clear that we can find a basis for all such matrices easily if we can find a basis for the space of row vectors $\left(\begin{array}{lll}x & y & z\end{array}\right)$ such that $2 x+y-z=0$. Equivalently, we want a basis for the left nullspace of $(2,1,-1)$, or the nullspace

$$
N\left(\left(\begin{array}{lll}
2 & 1 & -1
\end{array}\right)\right)
$$

Since this matrix is essentially in row-reduced echelon form already (just multiplied by 2), we can apply our standard methods to find a nullspace basis, for example:

$$
(1,-2,0),(1,0,2)
$$

So we can write the vector space of matrices such that $(2,1,-1) \in N(A)$ as spanned by

$$
\left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & -2 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

So the dimension of this space is 6 (which is not surprising since we have put 3 conditions on a 9 -dimensional space).

2 Problem 3

(Strang, section 3.5, problem 21.)
Suppose $A=u v^{T}+w z^{T}$ (it is the sum of two rank-1 matrices).

- Which vectors span the column space of A ?
- Which vectors span the row space of A ?
- The rank of A is less than 2 if ???????? or if ????????.
- Compute A and its rank if $u=z=(1,0,0)$ and $v=w=(0,0,1)$. Check your answer with Julia below.

In [1]: $\mathrm{u}=\mathrm{z}=[1,0,0]$
$\mathrm{v}=\mathrm{w}=[0,0,1]$
$\mathrm{A}=\mathrm{u} * \mathrm{v}^{\prime}+\mathrm{w} * \mathrm{z}^{\prime}$
Out[1]: 3x3 Array\{Int64,2\}:
$0 \quad 0 \quad 1$
$0 \quad 0 \quad 0$
100
In [2]: $\operatorname{rank}(A)$
Out[2]: 2

2.0.1 Solution

- The vectors u and w span the column space, since every column is a linear combination of these two vectors. (They may not be a basis, because they may not be independent!)
- The vectors v and z span the row space, for the same reason. (Again, possibly not a basis.)
- Generically (for random vectors u, v, w, z), we would expect the rank of A to be 2 . It will only be less than 2 in the following special cases:
- $A=0$ (e.g. $u=w=0, v=w=0$, or other cases where $u v^{T}=-w z^{T}$). Then it is rank 0 .
- If $A \neq 0$ and u and w are parallel (one is a multiple of the other) or v and z are parallel, then A will be rank 1. (In this case, it is easy to see that the column/row space is spanned by a single nonzero vector.)
- When $u=z=(1,0,0)^{T}$ and $v=w=(0,0,1)^{T}$, we obtain:

$$
A=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

And A has rank 2, as expected. Our result is checked in Julia above.

3 Problem 4

(Based on Strang, section 4.1, problem 9.)
The following is an important property of the very important matrix $A^{T} A$ (for real matrices) that will come up several times in 18.06:

- If $A^{T} A x=0$ then $A x=0$. Reason: If $A^{T} A x=0$, then $A x$ is in the nullspace of A^{T} and also in the ?????? of A, and those spaces are ???????. Conclusion: $N\left(A^{T} A\right)=N(A)$.
- Alternative proof: $A^{T} A x=0$, then $x^{T} A^{T} A x=0=(A x)^{T}(A x)$. Why does this imply that $A x=0$? (Hint: if $y^{T} y=0$, can we have $y \neq 0$?)
- If A is a random $m \times n$ matrix, what can you conclude about the ranks of $A^{T} A$ and $A A^{T}$? Try it in Julia for a 5×7 random matrix:

```
In [3]: A = randn(5,7)
Out[3]: 5x7 Array{Float64,2}:
\begin{tabular}{lllllll}
-1.42488 & 0.49731 & 0.193989 & -0.518111 & -1.60314 & -1.79199 & -0.803947 \\
-1.12835 & -0.236285 & -1.48037 & -1.38106 & 0.278083 & 1.33166 & 1.48049 \\
0.595007 & -0.0488672 & -1.13801 & 0.330875 & 0.713253 & -0.785896 & -0.673687 \\
-0.394517 & 0.361648 & -0.428049 & 0.364408 & -0.504469 & -0.525341 & -1.83838 \\
-1.2217 & 1.40207 & -0.230121 & -0.168273 & 1.43475 & 0.475414 & 0.254754
\end{tabular}
In [4]: rank(A'*A)
Out [4]: 5
In [5]: rank(A*A')
Out[5]: 5
```


3.0.1 Solution

- If $A^{T} A x=0$ then $A x=0$. Reason: If $A^{T} A x=0$, then $A x$ is in the nullspace of A^{T} and also in the column space of A, and those spaces are orthogonal. So $A x$ is orthogonal to itself, thus $A x=0$. Conclusion: $N\left(A^{T} A\right)=N(A)$.
- If $(A x)^{T}(A x)=0$ this means that the length of the vector $A x$ is 0 . But the only vector with zero length is the zero vector, since a sum of squares can be zero only if all the squares are zero.
- In our 5×7 example A in Julia above, we saw that the ranks of $A^{T} A$ and $A A^{T}$ were 5 ; this is essentially certain to happen. Reason: if an $m \times n$ matrix A has rank r, then $N(A)=N\left(A^{T} A\right)$ has dimension $n-r$, and hence the $n \times n$ matrix $A^{T} A$ also has rank r. The same reasoning can be applied to A^{T} and $A A^{T}$, and hence $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A A^{T}\right)$. A random A is almost certainly full rank, so it will have $\operatorname{rank}(A)=\min (m, n)$, and therefore $A^{T} A$ and $A A^{T}$ will have the same rank $\min (m, n)$ ($=5$ in this case).

