
pset5

September 7, 2017

1 18.06 Pset 5

Due Wednesday, March 15.

1.1 Problem 1

(From Strang, section 10.1, question 17.) Suppose A is a 12 × 9 incidence matrix from a connected (but
unknown) graph.

1. How many columns of A are independent?
2. What condition on f makes it possible to solve AT y = f . (Give an explicit formula, don’t just say
f ∈ C(AT) or similar.)

3. The diagonal entries of ATA give the number of edges into each node. What is the sum of those
diagonal entries?

1.2 Problem 2

In class, we represented a graph by an incidence matrix. Another way to represent a graph by a matrix is
to use an adjacency matrix.

For a graph with n nodes, the adjacency matrix A is a square n×n matrix, where Ai,j = 1 if there is an
edge from node i to node j, and is zero otherwise.

For example, consider the example graph used in lecture: Its adjacency matrix is:

In []: A = [0 0 0 1 0 0

1 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0]

1.2.1 part (a)

Consider a vector x = (1, 0, 0, 0, 0, 0), which has a nonzero entry only in node 1. If we multiply this by AT

one or two times, we get:

In []: x = [1,0,0,0,0,0]

A’ * x

In []: A’^2 * x

• What is the smallest power n of AT such that xT (AT)nx > 0? Why?
• How does this change if we use A instead of AT ?

1

https://en.wikipedia.org/wiki/Adjacency_matrix

1.2.2 part (b)

The smallest power of A that gives an entry > 1 is A4, for which the (2, 6) entry is equal to 2. This is
because node 2 and 6 are connected by ???????? of length 4.

In []: A^4

1.3 Problem 3: Nonlinear equations and Newton’s method

18.06 is about linear systems of equations, but often real-world problems involve nonlinear equations. But
linear algebra is still useful in such cases! Often, we solve nonlinear equations by approximating them by a
sequence of linear equations. One common such technique is the multidimensional Newton’s method. You
will explore an application of that in this problem.

Turn in a printout of any code you write and plots you make along with your solutions.
Suppose we are solving the system of nonlinear equations:

x31 − 3x1x
2
2 + x1 − 1 = 03x21x2 − x32 + x2 = 0

in two real variables x1 and x2. We can also write this as a vector equation v(x) = 0, where

x =

(
x1
x2

)
, v(x) =

(
x31 − 3x1x

2
2 + x1 − 1

3x21x2 − x32 + x2

)
.

The key to Newton’s method is this: given a guess for x, we approximate our function v for nearby x+ δ
by a linear approximation, given by the Taylor expansion of v to first order. In particular, if

δ =

(
δ1
δ2

)
,

the multidimensional Taylor expansion takes the form:

v(x+ δ) = v(x) + J(x)δ + · · ·

where J(x) is some matrix.

1.3.1 part (a)

Write down an explicit equation for the entries of the matrix J(x) in the Taylor expansion of our
function v(x) above.

Recall from 18.02, that we can Taylor expand a function f(x1, x2) as

f(x1 + δ1, x2 + δ2) = f(x1, x2) +
∂f

∂x1

∣∣∣∣
x1,x2

δ1 +
∂f

∂x2

∣∣∣∣
x1,x2

δ2 + · · · .

If you apply this to each component of v(x), you should get a formula for the matrix J(x).

1.3.2 part (b)

Write a Julia function J(x) that, given a vector x, returns the matrix J(x) using your formula from (a).
For example, here is a function v(x) returning the column vector v(x):

In []: v(x) = [x[1]^3-3*x[1]*x[2]^2+x[1]-1

3*x[1]^2*x[2]-x[2]^3+x[2]]

In a similar style, implement the function J(x) returning a 2×2 matrix:

In []: J(x) = [??? ???

??? ???]

2

1.3.3 part (c)

To get a Newton step, we replace x by x+ δ, where δ is the solution to

v(x) + J(x)δ = 0 .

That is, we approximate v(x + δ) by the first-order Taylor expansion, and use this to approximately solve
v(x+ δ) ≈ 0.

Write a Julia function newtonstep(x) that takes a vector x and returns the Newton step x+ δ given
by the solution to the first-order (linear!) equation above. (Recall that if you are solving Ax = b, the solution
x in Julia is A \ b.) Use your functions v(x) and J(x) from (b)!

In []: newtonstep(x) = some formula for x+δ

1.3.4 part (d)

It turns out that there are exactly 3 real solutions to v(x) = 0

x1 = 0.6823278038280195, x2 = 0

and
x1 = −0.3411639019140098, x2 = ±1.1615413999972526

If you give an initial guess of (0.5, 0.1), you should see that the Newton steps rapidly converge towards
the first solution.

Run the following code to interactively change the number of Newton iterations and see the results. How
many Newton iterations do you need to get x1 = 0.6823278038280195 with 4 correct digits? How
many for 10 digits?

In []: # Pkg.add("Interact") # uncomment this line if you haven’t installed Interact yet

using Interact

@manipulate for iterations in slider(0:30, value=0)

x = [0.5, 0.1]

for i = 1:iterations

x = newtonstep(x)

end

Text("x1 = $(x[1]), x2 = $(x[2])")

end

(If it doesn’t converge to the right answer, you made a mistake in your steps above! Go fix it before
continuing!)

1.3.5 part (e)

What solution the Newton steps converge to (or whether they converge at all!) depends strongly on our
initial guess. If the initial guess is close to a solution, it will converge to that solution, but if the initial guess
is far away then the behavior is much less predictable.

The following code tries the Newton iterations for different starting points (x1, x2), and uses a different
color depending on which root was found. (It plots the exact solutions as stars.) What do you notice
about the pattern of colors, especially on the boundaries between the regions that converge
to one solution or another?

(You might want to change the range of x1 and x2 that are plotted to zoom in on the boundaries.)

In []: # do repeated newton steps, starting at x, until

the solution converges or maxiters is reached,

returning the tuple: (solution x, number of iterations)

function newton(x, maxiters=100)

3

for i = 1:maxiters

xnew = newtonstep(x)

xnew == x && return (x, i)

x = xnew

end

return (x, maxiters)

end

In []: # Pkg.add("PyPlot") # uncomment this line if you haven’t installed PyPlot yet

using PyPlot

In []: x1 = linspace(-2,2,400) # 400 equally spaced points from -2 to 2

x2 = linspace(-2,2,400) # 400 equally spaced points from -2 to 2

perform Newton iterations and plot the results for all (x1,x2)

results = [newton([x1,x2]) for x2 in x2, x1 in x1]

pcolor(x1’, x2, map(r -> atan2(r[1][2], r[1][1]), results), cmap="Blues")

plot stars for the locations of the exact solutions:

sols = [0.6823278038280195 0.0

-0.3411639019140098 1.1615413999972526

-0.3411639019140098 -1.1615413999972526]

plot(sols[:,1], sols[:,2], "r*")

axis("square")

xlabel(L"x_1")

ylabel(L"x_2")

title("color = Newton solution; stars = solutions")

It is also interesting to plot the number of iterations that were required to converge as a function of
(x1, x2):

In []: pcolor(x1’, x2, map(r -> r[2], results))

plot(sols[:,1], sols[:,2], "r*")

axis("square")

xlabel(L"x_1")

ylabel(L"x_2")

colorbar()

title("number of Newton iterations to converge")

4

