
pset6-sol

September 7, 2017

1 18.06 pset 6 - Solutions

1.1 Problem 1

(Strang, chapter 4.2, problem 13.) Suppose A is the 4 by 4 identity matrix with the last column removed,
so that A is 4 by 3. Project b = (1, 2, 3, 4) onto C(A). What shape is the projection matrix P? What is P?

1.1.1 Solution

The matrix A is

A =


1 0 0
0 1 0
0 0 1
0 0 0


The span of the columns of A is just the 3-dimensional subspace V = {x4 = 0} of those vectors who have
the last coordinate equal to 0, so the orthogonal projection onto V is done by making the fourth coordinate
equal to zero. That is, the projection of b is Pb = (1, 2, 3, 0)T .

Since the columns of A are orthonormal we can compute the projection matrix onto C(A) by

P = AAT =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


1.2 Problem 2

(Based on Strang, chapter 4.2, questions 21–23.) If A is full column rank, the projection matrix onto C(A)
is P = A(ATA)−1AT . Show:

• P 2 = PP = P . (Pb is in C(A), so projecting again does not change it.)
• PT = P . That is, show that P is symmetric. (Remember that (B−1)T = (BT)−1 for any invertible
B.)

• If A is invertible, then show that P = I.

1.2.1 Solution

• We can derive PP = P just by direct multiplication:

P 2 = A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT = P

But of course, the underlying result should be obvious: once you project onto a subspace, additional
projections don’t need to do anything to stay in the subspace. Projecting twice must therefore be the
same as projecting once:

1

• Again, we can show PT = P by direct computation:

PT = (A(ATA)−1AT)−1 = (AT)T ((ATA)−1)TAT = A((ATA)T)−1AT = A(ATA)−1AT

where we used the fact that the transpose of the inverse is the inverse of the transpose: ((ATA)−1)T =
((ATA)T)−1 = (ATA)−1

• If A is invertible, there are several ways of seeing that P = I.
• If A is invertible then (ATA)−1 = A−1(AT)−1 and so P = A(ATA)−1AT = AA−1(AT)−1AT = I ·I = I
• If A is an invertible m×m matrix, then C(A) = Rm (the whole space): every vector is in C(A) already.

So, projection doesn’t need to do anything, and we must have P = I.
• P is invertible since it is a product of invertible matrices. But P 2 = P . So by multiplying by P−1 on

both sides gives P = I.

1.3 Problem 3

(Strang, chapter 4.4, problem 4.) Give an example of:

• A matrix Q with orthonormal columns but QQT 6= I
• Two orthogonal vectors that are not linearly independent. (Not orthonormal!)
• An orthonormal basis for R3, including the vector q1 = (1, 1, 1)/

√
3.

1.3.1 Solution

• This is generally true for any non-square Q, because rank(QQT) = rank(QTQ) = rank(I) = n, where
Q is an m× n matrix with m ≥ n. That means the m×m matrix QQT is not full rank unless m = n,
and therefore it cannot equal I. As a specific example, take Q to be the matrix A of problem 1

Q =


1 0 0
0 1 0
0 0 1
0 0 0


The columns of Q are orthonormal but as we have seen QQT 6= I.

• At least one of the vectors simply has to be zero, since that is orthogonal to everything but not linearly
independent of anything (since it is any vector times 0). For example, the vectors v1 = (1, 0)T and
v2 = (0, 0)T in R2. Clearly vT1 v2 = 0 and so they are orthogonal, but v2 = 0v1 so they are not
independent.

• We just need to start with any set {q1, v2, v3} of independent vectors that includes q1, and then apply
Gram-Schmidt to the other two vectors. For example:

v2 = (1,−1, 0), v3 = (0, 1,−1) .

To save ourselves work, we conveniently chose these vectors to already be orthogonal to q1. So, on the
first Gram–Schmidt step we simply need to normalize v2 to obtain q2:

q2 =
v2√
vT2 v2

= (1/
√

2,−1/
√

2, 0)T .

On the second Gram–Schmidt step, we have to remove the q1 and q2 components from v2, but since
qT1 v2 = 0 already we just need to remove the q2 component:

w3 = v3 − q2qT2 v3 = (0, 1,−1)− (−1/2, 1/2, 0) = (1/2, 1/2,−1)

Finally we normalize this to a unit vector:

q3 =
w3√
wT

3 w3

= (1/
√

6, 1/
√

6,−2/
√

6)

2

1.4 Problem 4

If Q is an m×n matrix with orthonormal columns then $(Qx)ˆT (Qy) = $???? for any x and y in Rn, and
hence ‖Qx‖ = ???? for any x.

1.4.1 Solution

We have
(Qx)T (Qy) = xTQTQy = xT y

and in particular

‖Qx‖ =
√

(Qx)TQx =
√
xTx = ‖x‖

1.5 Problem 5

The standard (“classical”) Gram–Schmidt algorithm is notoriously susceptible to roundoff errors when vec-
tors are nearly parallel. (There are much better algorithms that are not covered in 18.06.) In this problem,
you will explore that susceptibility.

Apply the Gram–Schmidt algorithm to find an orthonormal basis for the column space of

A =


1 1 1
ε 0 0
0 ε 0
0 0 ε


where ε = 10−10.

However, round your calculations (as you do each operation!) to about 15 significant digits. For example,
approximate 1 + ε2 ≈ 1. Are your resulting basis vectors close to orthogonal?

In comparison, Julia’s qr function uses a much more accurate method (“Householder reflectors”). Try it
and see how close its vectors are to the ones you came up with:

In [1]: ε = 1e-10

A = [1 1 1

ε 0 0

0 ε 0

0 0 ε]
Q = qr(A)[1]

Out[1]: 4×3 Array{Float64,2}:
-1.0 7.07107e-11 4.08248e-11

-1.0e-10 -0.707107 -0.408248

0.0 0.707107 -0.408248

0.0 0.0 0.816497

We can check how close Julia’s Q is to orthonormal columns by computing QTQ:

In [2]: Q’*Q

Out[2]: 3×3 Array{Float64,2}:
1.0 0.0 0.0

0.0 1.0 -1.66533e-16

0.0 -1.66533e-16 1.0

This is very close to the identity, up to the usual 16th-digit roundoff errors, so the qr function is
clearly doing a good job. . . much better than what you should get by applying Gram–Schmidt below.

3

1.5.1 Solution

Let v1, v2, v3 be the columns of A. First we renormalize the first column. The length of the first column is√
vT1 v1 =

√
1 + ε2 ≈ 1

(since 1 + ε2 ≈ 1). So

q1 = (1, ε, 0, 0)

is just the first column. Now let us subtract the projection of v2 onto q1:

w2 = v2 − q2(qT2 v2) = (1, 0, ε, 0)− (1, ε, 0, 0)× 1 = (0,−ε, ε, 0)

The length of w2 is
√
wT

2 w2 =
√

2ε2 =
√

2ε so after normalization we get

q2 =
w2√
2ε

= (0,−1, 1, 0)/
√

2

Let now remove from v3 the projections onto q1 and q2. Since qT2 v3 = 0, we just need to project out q1:

w3 = v3 − q1(qT1 v3)− q2(qT2 v3) = (1, 0, 0, ε)− (1, ε, 0, 0)× 1− q2× 0 = (0,−ε, 0, ε)

Its length is again ‖w3‖ =
√

2ε so we get the unit vector

q3 =
w3

‖w3‖
= (0,−1, 0, 1)/

√
2

That is

In [3]: Q~ = [1 0 0

ε -1/
√
2 -1/

√
2

0 1/
√
2 0

0 0 1/
√
2]

Out[3]: 4×3 Array{Float64,2}:
1.0 0.0 0.0

1.0e-10 -0.707107 -0.707107

0.0 0.707107 0.0

0.0 0.0 0.707107

and

In [4]: Q~’*Q~

Out[4]: 3×3 Array{Float64,2}:
1.0 -7.07107e-11 -7.07107e-11

-7.07107e-11 1.0 0.5

-7.07107e-11 0.5 1.0

This is very different from the expected I matrix. The problem is that qT2 q3 = 1/2, which is very far
from orthogonal.

This is the basic problem with Gram–Schmidt, especially the “classical” Gram–Schmidt process as pre-
sented in class and in the textbook: if the starting vectors are close to being dependent (e.g. nearly parallel),
then in the presence of roundoff errors it can produce very non-orthogonal results. There is a “modified”
Gram–Schmidt process presented in the textbook that is much better, but in practice computers nowadays
use an algorithm that is better still, called “Householder QR” — this is why the Julia qr(A) function did
such a good job, above.

Gram–Schmidt is still quite a useful way to think about orthogonalization and QR factorization. But a
lot of care is required in translating conceptual algorithms into practical algorithms. (Practical algorithms
are not the focus of 18.06, but are covered in 18.335 and many textbooks, such as Numerical Linear Algebra
by Trefethen and Bau. But is important to be at least vaguely aware of the difference between our conceptual
approach and a serious numerical implementation.)

4

1.6 Problem 6

In class, we showed that applying Gram–Schmidt to the columns of A, from left to right, corresponds
to a factorization A = QR where R is upper-triangular and the columns of Q are our orthonormal basis
(QTQ = I).

If you do Gram–Schmidt from right to left on the columns of A, what would the corresponding factor-
ization of the matrix A look like?

1.6.1 Solution

Suppose we do Gram–Schmidt from right-to left on the columns of $A =(
a1 a3 · · · an

)
$. That is:

q̃n =
an
‖an‖

q̃n−1 =
an−1 − q̃nq̃Tn an−1

‖ · · · ‖
...

We clearly still get a matrix $ =(
q̃1 q̃2 · · · q̃n

)
$ with orthonormal columns made from the columns of A. Furthermore since these are column opera-

tions, they corresponding to multiplying A by another matrix on the right to get Q̃ or vice-versa. So, we
still must have a factorization of the form:

A = Q̃R̃

What does the matrix R̃ look like? The k-th column of R̃ indicates what linear combination of
the columns of Q̃ gives ak (the k-th column of A). Since we did Gram–Schmidt from right to left, by
construction we know that ak is in the span of {q̃k, q̃k+1, . . . , q̃n}, i.e. ak is made from columns k to n of
Q˜. That means that the k-th column of R̃ only has nonzero entries in rows ≥ k. But this is precisely
a lower-triangular matrix.

So, Gram–Schmidt from right to left on an m × n matrix A (assumed full column rank, as in class)
produces the factorization A = Q̃R̃ where the m × n matrix Q̃ has orthonormal columns (Q̃T Q̃ = I) and
the n× n matrix R̃ is an invertible lower-triangular matrix.

Alternate solution Let

P =


0 0 · · · 0 1
0 0 · · · 1 0

...
1 0 · · · 0 0


be the permutation matrix corresponding to the permutation that reverses the order of the components.
Then applying Gram-Schmidt from right to left is the same thing as applying Gram-Schmidt to AP (A with
columns in reverse order). That is let

AP = Q′R′

be the classical QR factorization of AP . Then the matrix Q that we obtain by doing Gram-Schmidt right
to left is Q′P (Q′ with columns reversed to match A) and so the corresponding factorization of A is

A = (AP)P = Q′R′P = (Q′P)(PR′P)

Comparing to above, this is A = Q̃R̃, where Q̃ = Q′P and R̃ = PR′P . The Q̃ matrix still has orthonormal
columns, of course (explicitly: Q̃T Q̃ = PTQ′TQ′P = PTP = I). The matrix R̃ = PR′P is lower triangular,
since R′ is upper triangular and PR′P flips both its rows and columns as in problem 4a of pset 2.

5

