
pset7-sol

September 7, 2017

1 18.06 pset 7 - Solutions

1.1 Problem 1

Refer to the orthogonal polynomials notebook from class for this problem.

In class, we defined an dot product f · g =
∫ 1

−1 f(x)g(x)dx for functions on x ∈ [−1, 1], and using this

we showed how we could apply Gram–Schmidt to the polynomials {1, x, x2, . . .} to find an orthogonal of
polynomials pk(x), the Legendre polynomials.

1.1.1 part (a)

In class, I claimed that by performing the orthogonal projection of any function f(x) onto these polynomials,
we obtain the least-square fit polynomial on the interval [−1, 1]. In this problem, you will apply basic
calculus to show that explicitly.

Suppose we have an orthonormal basis q0(x), q1(x), q2(x), q3(x) for all degree ≤ 3 polynomials (the vector
space P3). i.e. qi · qj = 0 if i 6= j and = 1 if i = j, using our dot product from above. Given a real-valued
function f(x) on [−1, 1] (with finite f · f — none of these integrals should blow up!), we want to find the
closest degree-3 polynomial to f in the least-square sense:

min
p∈P3

∫ 1

−1
[f(x)− p(x)]2dx = min

p∈P3

(f − p) · (f − p) = min
p∈P3

‖f − p‖2

Write p(x) in our orthonormal basis:

p(x) = c0q0(x) + c1q1(x) + c2q2(x) + c3q3(x)

At the minimum p (the least-square fit), basic calculus tells us that the partial derivative must be zero:

∂

∂ck
‖f − p‖2 = 0

Show that this leads to the condition ck = qk · f , which is exactly the coefficient of the orthogonal
projection.

Hint: You can easily verify that the product rule ∂
∂c (f · g) =

(
∂f
∂c · g

)
+
(
f · ∂g∂c

)
works for dot products

of functions!

1.1.2 part (b)

Suppose that we have real-valued function f(x) that is in the span of an infinite orthonormal basis qk(x) of
functions (e.g. polynomials as above) on [−1, 1] with the dot product from above, i.e.

f(x) =

∞∑
k=0

ckqk(x)

for coefficients ck = qk · f . Assuming ‖f‖ is finite (i.e. the function f is square-integrable), derive the
identity:

1

http://nbviewer.jupyter.org/github/stevengj/1806-spring17/blob/master/lectures/Orthogonal-Polynomials.ipynb
https://en.wikipedia.org/wiki/Square-integrable_function

‖f‖2 = f · f =

∞∑
k=0

c2k

(This result is called Parseval’s theorem for Fourier series.)
How does this relate to problem 4 of pset 6?
(For people who have taken 18.100 or similar: assume you can freely interchange/re-order the infinite

sums, limits, integrals, etcetera; doing this properly would involve establishing some technical conditions on
the infinite series here.)

1.1.3 Solution

part (a) We want to solve
∂

∂ck
‖f − p‖2 = 0

Let us first compute ‖f − p‖2 = (f − p) · (f − p). We can write

p = c1q1 + c2q2 + c3q3

Then

(f − p) · (f − p) =

∫ 1

−1
(f(x)− p(x))2dx =

∫ 1

−1
(f(x)2 + p(x)2 − 2f(x)p(x)dx) =

=

∫ 2

−1

(
f(x)2 + c21q1(x)2 + c22q2(x)2 + c23q3(x)2 + 2c1c2q1(x)q2(x) + 2c1c3q1(x)q3(x) + 2c2c3q2(x)q3(x)− 2c1f(x)q1(x)− 2c2f(x)q2(x)− 2c3f(x)q3(x)

)
dx =

= ‖f‖2+c21‖q1‖2+c22‖q2‖2+c23‖q3‖2+2c1c2(q1·q2)+2c1c3(q1·q3)+2c2c3(q2·q3)−2c1(f ·q1)−2c2(f ·q2)−2c3(f ·q3) =

= ‖f‖2 + c21 + c22 + c23 − 2c1(f · q1)− 2c2(f · q2)

Using that qi · qj is 1 if i = j and 0 if i 6= j.
Now let us compute ∂

∂c1
‖f − p‖2.

∂

∂c1
‖f − p‖2 = 2c1 − 2(f · q1)

So the partial derivative is zero if and only if c1 = f · q1. The case for c2 and c3 is identical.

Alternative solution Instead of doing the lengthy computation above we could have noticed that for
all h, g we have a product rule for the derivative of the dot product:

∂

∂ci
(h · g) =

∂

∂ci

∫ 1

−1
h(x)g(x)dx =

∫ 1

−1

(
∂h

∂ci

)
g(x) + h(x)

(
∂p

∂ci

)
dx =

(
∂h

∂ci

)
· g + h ·

(
∂g

∂ci

)
and so

∂

∂ci
‖f−p‖2 =

∂(f − p)
∂ci

·(f−p)+(f−p) · ∂(f − p)
∂ci

= 2(f−p) · ∂(f − p)
∂ci

= −2(f−p) ·qi = −2(f ·qi−ci) = 0

and hence ci = f · qi. (We used the facts that ∂p/∂ci = qi and p · qi = ci.)

2

https://en.wikipedia.org/wiki/Parseval's_theorem

Part (b) Writing down the definition

‖f‖2 = f ·f =

∫ 1

−1

(∞∑
k=0

ckql(x)

)(∞∑
k=0

ckqk(x)

)
dx =

∫ 1

−1

 ∞∑
k,k′=0

ckck′qk(x)qk′(x)

 dx =

∞∑
k,k′=0

ckck′

∫ 1

−1
qk(x)qk′(x)dx =

∞∑
k,k′=0

ckck′(qk·qk′)

Now, since qk · qk′ is 0 if k 6= k′ and 1 if k = k′ we get the only terms contributing to the sum are those for
which k = k′. That is

‖f‖2 =

∞∑
k=0

c2k

as required.
This is exactly the same computation as problem 4 of pset 6. This is not a coincidence. In fact, if

x = (c1, . . . , cn) then the vector Qx is exactly
∑n
k=1 ciqi where qi are the orthonormal columns of Q. So this

problem is an infinite-dimensional version of that problem.

1.2 Problem 2

Apply Gram-Schmidt to the polynomials 1, x, x2 to find an orthonormal basis of polynomials under the
different dot product:

f · g =

∫ ∞
0

f(x)g(x)e−xdx

There are lots of ways to define dot products in practice, and in real applications the choice of dot
product depends a lot on the problem you are solving. For example, one might want to the weight the errors
differently at different points (here, weighting by e−x) in a least-square fit.

1.2.1 Solution

Note that the polynomials that we get by this procedure are quite famous: they are known as Laguerre
polynomials. (Like the Legendre polynomials we obtained in lecture, it turns out that there are easier ways
to obtain these polynomials, via recurrence relations.)

To solve this problem it will be helpful to find the value of the integrals

In =

∫ ∞
0

xne−xdx

For n = 0 we have, noticing that e−x is the derivative of −e−x

I0 =

∫ ∞
0

e−xdx = −e−x|∞0 = −e−∞ + e0 = 1

Now to compute In we will use integration by parts.

In =

∫ ∞
0

xne−xdx = −xne−x|∞0 + n

∫ ∞
0

xn−1e−xdx = nIn−1

So ∫ ∞
0

xne−xdx = In = nIn−1 = n(n− 1)In−2 = n(n− 1)(n− 2)In−3 = · · · = n!I0 = n!

Let us compute the norm of 1

‖1‖2 = 1 · 1 =

∫ ∞
0

e−xdx = −e−x|∞0 = −e−∞ + e0 = 1

So ‖1‖ = 1 and there is no need to renormalize.

q1 = 1

3

https://en.wikipedia.org/wiki/Laguerre_polynomials
https://en.wikipedia.org/wiki/Laguerre_polynomials
https://en.wikipedia.org/wiki/Legendre_polynomials

Let us now compute the length of the projection of x onto 1:

1 · x =

∫ ∞
0

xe−xdx = −(1 + x)e−x|∞0 =
(
−∞ · e−∞ + e0

)
= 1

So to make x orthogonal to 1 we need to subtract 1, that is the orthogonal vector is x − 1. Let us now
compute the length of it

‖x− 1‖2 =

∫ ∞
0

(x− 1)2e−xdx =

∫ ∞
0

e−xdx− 2

∫ ∞
0

xe−xdx+

∫ ∞
0

x2e−xdx = 1− 2 + 2! = 1

So there is no need to renormalize
q2 = x− 1

Now let us compute the length of the projection of x2 onto 1 and x− 1.

x2 · 1 =

∫ ∞
0

x2e−xdx = 2! = 2

x2 · (x− 1) =

∫ ∞
0

(x3 − x2)e−xdx =

∫ ∞
0

x3e−xdx−
∫ ∞
0

x2e−xdx = 3!− 2! = 4

So after removing the projections we obtain

x2 − 2(1)− 4(x− 1) = x2 − 4x+ 2

Finally we just need to renormalize it

‖x2−4x+2‖2 =

∫ ∞
0

(x2−4x+2)2e−xdx =

∫ ∞
0

(x4+16x2+4−8x3+4x2−16x)e−xdx =

∫ ∞
0

(x4−8x3+20x2−16x+4)e−x =

∫ ∞
0

x4e−xdx−8

∫ ∞
0

x3e−xdx+20

∫ ∞
0

x2e−xdx−16

∫ ∞
0

xe−xdx+4

∫ ∞
0

e−x = 4!−8·3!+20·2!−16·1!+4·0! = 4

After renormalizing

q3 =
1√
4

(x2 − 4x+ 2) =
1

2
x2 − 2x+ 1

1.3 Problem 3

(Based on Strang, section 6.2, problem 33.) Consider the following four 2×2 matrices, which have very
similar-looking entries:

In [2]: A = [3. 2.

1. 4.]

B = [3. 2.

-5. -3.]

C = [5. 7.

-3. -4.]

D = [5. 6.9

-3. -4.]

display(A); display(B); display(C); display(D)

2×2 Array{Float64,2}:

3.0 2.0

1.0 4.0

2×2 Array{Float64,2}:

3.0 2.0

-5.0 -3.0

4

2×2 Array{Float64,2}:

5.0 7.0

-3.0 -4.0

2×2 Array{Float64,2}:

5.0 6.9

-3.0 -4.0

1.3.1 (a)

Compute each matrix to the 100th power in Julia, e.g. compute A100 in Julia by A^100. The results should
be very different!

In [3]: A^100

Out[3]: 2×2 Array{Float64,2}:
2.62954e69 5.25907e69

2.62954e69 5.25907e69

In [4]: B^100

Out[4]: 2×2 Array{Float64,2}:
1.0 -0.0

-0.0 1.0

In [5]: C^100

Out[5]: 2×2 Array{Float64,2}:
-5.0 -7.0

3.0 4.0

In [6]: D^100

Out[6]: 2×2 Array{Float64,2}:
-1.07139e-7 -1.73747e-7

7.5542e-8 1.19487e-7

1.3.2 (b)

All of these matrices are diagonalizable (can be written asXΛX−1 as in lecture), with two distinct eigenvalues
λ. The function eigvals(A) computes the eigenvalues of A in Julia. Using the built-in eigvals function,
compute the eigenvalues of these four matrices, and use them to explain the results you observed in part
(a).

Note that the eigenvalues may be complex numbers, even for real matrices, just as the roots of a real
polynomial may be complex! The complex number z = a + bi in Julia is written z = a + b*im. Complex
numbers can also be written in polar form z = reiθ, where r = abs(z) and θ = angle(z) in Julia. Recall
that zn = rneinθ blows up if |z| = r = abs(z) is > 1.

In [7]: eigvals(A)

Out[7]: 2-element Array{Float64,1}:
2.0

5.0

In [8]: eigvals(B)

5

http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Forms.aspx
http://www.suitcaseofdreams.net/powers_complex.htm

Out[8]: 2-element Array{Complex{Float64},1}:
2.42861e-16+1.0im

2.42861e-16-1.0im

In [9]: eigvals(C)

Out[9]: 2-element Array{Complex{Float64},1}:
0.5+0.866025im

0.5-0.866025im

In [10]: eigvals(D)

Out[10]: 2-element Array{Complex{Float64},1}:
0.5+0.67082im

0.5-0.67082im

1.3.3 Solution

As we can see, A100 has enourmous entries (of the order of 1069), while B100 = −I, C100 = −C and the
entries of D100 are tiny (of the order of 10−6). This can all be explained by their eigenvalues. As discussed
in class, multiplying by a matrix over and over just multiplies the eigenvectors by the eigenvalues λ over
and over. If |λ|>1, it diverges, while if |λ|<1, it decays. More explicitly, we showed in class that if E is a
diagonalizable matrix E = XΛX−1, we can write

E100 = XΛX−1XΛX−1 · · ·X−1XΛX−1 = XΛ100X−1

So to understand E100 it suffices to understand Λ100. But Λ is a diagonal matrix, and its diagonal entries
are the eigenvalues of E. That is, Λ100 is a diagonal matrix whose diagonal entries are the 100-th powers of
the eigenvalues of E.

The eigenvalues of A have magnitude bigger than 1, which is why A100 is huge. (The eigenvalues of A
are 2 and 5, so the eigenvalues of A100 are 2100 = 1.26× 1030 and 5100 = 7.89× 1069, so it is not surprising
that the entries of A100 = XΛ100X−100 are of the order of 1069.)

The eigenvalues 0.5±0.67082i of D have magnitude smaller than one. In Julia, this is the abs function:

In [13]: abs(0.5+0.67082im)

Out[13]: 0.8366597112327089

In [12]: abs.(eigvals(D))

Out[12]: 2-element Array{Float64,1}:
0.83666

0.83666

So, D100 is exponentially small. (The eigenvalues of D have absolute value 0.83666 < 1. So their 100-th
powers of the same order of magnitude as (0.83666)100 = 1.7× 10−8. So we would expect the entries of D100

to be approximately of the same order of magnitude as that, which is exactly what we see here.)
The eigenvalues of B and C are trickier: they are actually of absolute value 1:

In [14]: abs.(eigvals(B))

Out[14]: 2-element Array{Float64,1}:
1.0

1.0

In [15]: abs.(eigvals(C))

6

Out[15]: 2-element Array{Float64,1}:
1.0

1.0

We could check this more carefully by solving their characteristic polynomials explicitly. (In fact, we
would find that they are all roots of unity: ±i for B and sixth roots of unity for C.) So, raising them to the
100-th power does not change their absolute value: they neither grow nor decay, but in fact their real and
imaginary parts oscillate in sign.

More explicitly, since the eigenvalues of B are ±i, since (±i)4 = 1 it follows that B4 = I

In [16]: B^4

Out[16]: 2×2 Array{Float64,2}:
1.0 -0.0

-0.0 1.0

and hence B100 = (B4)25 = I25 = I as well.

The eigenvalues λ± = 0.5 ± i
√
3
2 of C have the property that λ2± = −λ±, hence any even power of C

gives −C.

In [25]: (0.5 + im *
√
3/2)^2

Out[25]: -0.4999999999999999 + 0.8660254037844386im

In [26]: eigvals(C).^2

Out[26]: 2-element Array{Complex{Float64},1}:
-0.5+0.866025im

-0.5-0.866025im

1.4 Problem 4

1.4.1 (a)

Based on Strang, section 5.1, problem 8. Prove that every orthogonal matrix (QTQ = I) has determinant
+1 or −1, in two ways:

• Use the product rule det(AB) = (detA)(detB) and the transpose rule detQ = detQT .
• Use only the product rule. If |detQ| < 1 then detQn = (detQ)n goes to zero: Qn becomes nearly

singular for large n. How do you know that this can’t happen to Qn?
• Hint: (Qn)T (Qn) =??? so Qn is ???.
• Alternatively, think about problem 4 of pset 6, and note that a nearly singular matrix A has a vector
x 6= 0 that is nearly in a nullspace (Ax is nearly zero).

1.4.2 (b)

If detA = 1, does that mean that A is orthogonal? Explain why or provide a counterexample if it is false.

1.4.3 (c)

If detA = 1234, what is detR where R is the upper-triangular matrix in the QR factorization of A?

7

1.4.4 Solution

(a) Using the product rule, and remembering detQ = detQT

1 = det(I) = det(QTQ) = det(QT) det(Q) = (detQ)2

So detQ = ±1
Alternatively, we may see that if Q is orthogonal, so is Qn. In fact

(Qn)TQn = QT · · ·QTQ · · ·Q = I

In particular Qn cannot be nearly singular In fact, if Qn were nearly singular, there would be a vector x
with ‖x‖ � 0 and ‖Qnx‖ very close to zero. But by problem 4 of pset 6 ‖Qnx‖ = ‖x‖. #### (b) There
are matrices A such that detA = 1 but A is not orthogonal. One example is

A =

(
1 1
0 1

)
A is upper triangular, so the determinant is the product of the diagonal entries, that is 1. But A is not
orthogonal. In fact

ATA =

(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
6= I

(c) Since A = QR we have

det(A) = det(Q) det(R) = ±1 det(R) = ± det(R)

since we have shown that det(Q) = ±1. Hence det(R) = ±det(A) = ±1234

1.5 Problem 5

1.5.1 (a)

The function X = randn(5,5) in Julia generates a random 5×5 matrix. Given X, we can compute a new
matrix Y = αX for some scalar α such that detY = 1234. What is α?

In [28]: X = randn(5,5)

to make things easier, I’ll force det(X) to be positive by flipping the sign of the first column if needed

if det(X) < 0

X[:,1] = -X[:,1]

end

det(X)

Out[28]: 4.143825593183501

In []: α = ??? # fill in this line!

Y = α * X

det(Y) # this should give 1234 (+ small roundoff error)

1.5.2 (b)

Using your matrix Y , compute its QR factorization by Q, R = qr(Y) and use this to check your answer
from problem 4(c) above.

In []: Q, R = qr(Y)

8

1.5.3 Solution

(a) We know that the determinant is multilinear in the columns. So when we multiply all columns of X
by the same number α, the determinant gets multiplied by αn, where n is the number of columns. So, if we
want det(αX) = α5 det(X) = 1234, we need

α5 =
1234

det(X)
⇒ α = 5

√
1234

det(X)

Hence

In [29]: α = (12345/det(X))^(1/5) # fill in this line!

Y = α * X

det(Y) # this should give 1234 (+ small roundoff error)

Out[29]: 12345.000000000002

(b) Let us check that the determinant of R is indeed ±12345 (up to a small error)

In [30]: Q, R = qr(Y)

det(R)

Out[30]: 12344.999999999998

9

