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1 18.06 pset 9 - Solutions

1.1 Problem 1

(For this problem, you might want to review the analysis of Fibonacci numbers from section 6.2 of the text.
You can also google “Fibonacci matrix” to find lots of similar info online at various levels of sophistication.)

Consider the “Tetranacci number” sequence tn:

0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10671, 20569, 39648, 76424, 147312, 283953, 547337

The first four terms are t1, t2, t3, t4 = 0, 0, 0, 1, and after that each number is the sum of four preceding
terms:

tn = tn−4 + tn−3 + tn−2 + tn−1

1.2 (a)

Write this recurrence relation in matrix form ~tn = A~tn−1 where ~tn = (tn, tn−1, tn−2, tn−3) for some matrix
A.

Check that you have the right matrix by computing A^16 * [1,0,0,0] in Julia and comparing to the
sequence terms given above. (Make sure that you compare to the right terms. Which terms should this
give?)

1.3 (b)

Find the eigenvalues of A numerically via eigvals(A). Using these, predict the what the ratio tn/tn−1 tends
to for large n.

Check your answer from numerically by computing t = big(A)^n * [1,0,0,0] in Julia to get the ~tn+4

vector for a large-ish n, and hence the ratio tn+4/tn+3 = t[1]/t[2]. (Doesn’t need to be too big because
of the exponential growth. Here, the big function is used to tell Julia to switch to slow arbitrary-precision
numbers so that you don’t run out of digits when n gets big.)

1.3.1 Solution

(a) We choose the matrix

A


1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 1


so that we have

A


tn+3

tn+2

tn+1

tn

 =


tn+3 + tn+2 + tn+1 + tn

tn+3

tn+2

tn

 =


tn+4

tn+3

tn+2

tn+1

 .
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If we now check numerically with Julia, A16


1
0
0
0

 should compute


t20
t19
t18
t17

 =


20569
10671
5536
2872

.

In [1]: A=[1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0]

A^16*[1,0,0,0]

Out[1]: 4-element Array{Int64,1}:
20569

10671

5536

2872

(b) Let us find the eigenvalues of A:

In [2]: eigvals(A)

Out[2]: 4-element Array{Complex{Float64},1}:
1.92756+0.0im

-0.0763789+0.814704im

-0.0763789-0.814704im

-0.774804+0.0im

We expect the ratio tn/tn−1 to tend to the value of the biggest eigenvalue (in this case 1.92756). In
particular, we always approach such problems by writing the initial vector in the basis of the eigenvectors:

1
0
0
0

 = c1v1 + c2v2 + c3v3 + c4v4

where |λ1| < |λ2| < |λ3| < |λ4| are the eigenvalues in order of increasing magnitude, v1, . . . , v4 are the
corresponding eigenvectors, and c1, . . . , c4 are some coefficients. We then have

tn+4

tn+3

tn+2

tn+1

 = An


1
0
0
0

 = λn1 c1v1 + λn2 c2v2 + λn3 c3v3 + λn4 c4v4 ≈ λn4 c4v4

since the λn4 term grows exponentially faster than the other three. If we look at the last component of this
vector, we see tn+1 ≈ λn4α, where α is the last component of c4v4. Hence

tn+1/tn ≈ (λn4α)/(λn−1
4 α) = λ4 = 1.92756

for n� 0.
Let us verify this with Julia:

In [3]: n=50

t=big(A)^n*[1,0,0,0]

t[1]/t[2]

Out[3]: 1.927561975482925303801783836461860202766769057070753895783659858855992063133400
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1.4 Problem 2

(From Strang, section 6.4, problem 18.)
Let A be some real rectangular (possibly non-square) matrix. The block matrix

S =

(
0 A
AT 0

)
is real-symmetric (where “0” denotes a block of zeros). Consider the (real) eigenvalues λ and eigenvectors
x = (y, z) of S, satisfying Sx = λx:

Sx =

(
0 A
AT 0

)
︸ ︷︷ ︸

S

(
y
z

)
︸︷︷︸

x

= λ

(
y
z

)
= λx

(a) If A is m× n, how big are the vectors y and z, and how big are the two blocks of 0’s in S?
(b) Show that −λ is also an eigenvalue, with eigenvector (y,−z).
Check this for a random 3 × 4 matrix A = randn(3,4), with S = [ zeros(3,3) A; A zeros(4,4)].

Compute eigvals(S): does it match your prediction?
(c) Show that ATAz = λ2z, so that λ2 is an eigenvalue of ATA. Check this via eigvals(A*A).
(d) If A = I (2× 2), find all four eigenvectors and eigenvalues of S.

1.4.1 Solution

(a) If A is m×n, the dimensions of the two blocks of zeros are m×m for the top left one (since it has the
same number of rows as A) and n × n for the bottom right one (since it has the same number of columns
as A). Similarly y is an m-dimensional vector and z is an n-dimensional one. #### (b) If Sx = λx, this
means that Az = λy and AT y = λz. Hence

S

(
y
−z

)
=

(
0 A
AT 0

)(
y
−z

)
=

(
−Az
AT y

)
=

(
−λy
λz

)
= −λ

(
y
−z

)
.

So −λ is an eigenvalue of S with eigenvector

(
y
−z

)
. Let us verify this with Julia:

In [4]: A=randn(3,4)

S=[zeros(3,3) A; A’ zeros(4,4)]

λ=eigvals(S)

Out[4]: 7-element Array{Float64,1}:
-4.13035

-1.91185

-1.14518

8.53459e-16

1.14518

1.91185

4.13035

As expected the nonzero eigenvalues (the central eigenvalue is 0 up to machine precision) come in pairs
λ and −λ. In fact 0 has to be an eigenvalue, since A has 7 eigenvalues and the nonzero ones come in pairs.

(c) If

(
y
z

)
is an eigenvector of S with eigenvalue λ, we have Az = λy and AT y = λz. In particular, z has

to be nonzero, since if z = 0, y = 0 and

(
y
z

)
= 0 would not be an eigenvector. So

ATAz = AT (λy) = λ2z

Hence, since z 6= 0, we have that λ2 is an eigenvalue of A with eigenvector z. Let us check it with Julia:
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In [5]: λ2=eigvals(A’*A)

λ2,λ.^2

Out[5]: ([2.14651e-16,1.31144,3.65518,17.0598],[17.0598,3.65518,1.31144,7.28392e-31,1.31144,3.65518,17.0598])

and we see that the eigenvalues of ATA are precisely the squares of the eigenvalues of A. (Don’t be
confused by the fact that we get them in a different order; the ordering of the computed eigenvalues is
somewhat arbitrary.) #### (d) If A is the 2× 2 identity matrix, the only eigenvalue of ATA = I is 1. So

the possible eigenvalues of S are ±1. In fact if e1, e2 are two eigenvectors of ATA (for example

(
1
0

)
and(

0
1

)
), we have that (

e1
Ae1

)
,

(
e1
−Ae1

)
,

(
e2
Ae2

)
,

(
e2
−Ae2

)
,

are eigenvectors of S for 1, -1, 1 and -1 respectively.
Let us verify our computation with Julia

In [6]: S=[zeros(2,2) eye(2); eye(2) zeros(2,2)]

eigvals(S)

Out[6]: 4-element Array{Float64,1}:
-1.0

-1.0

1.0

1.0

1.5 Problem 3

(From Strang, section 6.4, problem 33.)
Suppose AT = −A, a real antisymmetric matrix (also called skew-symmetric). Form a random real

antisymmetric 5× 5 matrix in Julia via A = randn(5,5); A = A - A.
Explain the following facts about A, and check each fact numerically for your random A matrix:
(a) xTAx = 0 for every real vector x. (Try x*A*x in Julia with x = randn(5).)
(b) The eigenvalues of A (eigvals(A)) are purely imaginary.
(c) The determinant of A (det(A)) is positive or zero (not negative).
(d) If you solve dx/dt = Ax for any initial condition x(0), then the length of x is conserved: ‖x(t)‖ =

‖x(0)‖ for all t. (In Julia, compare norm(expm(A*t)*x) to norm(x) for various t.)

1.5.1 Solution

(a) Since xTAx is a 1× 1 matrix, it is equal to its own transpose. But

xTAx = (xTAx)T = xTAT (xT )T = xT (−A)x = −xTAx

So xTAx is a number that is equal to its own opposite: it can be only zero.
Let us verify it with Julia:

In [7]: A=randn(5,5); A=A-A’;

x=randn(5)

x’*A*x

Out[7]: 1-element Array{Float64,1}:
3.33067e-16

Yes, the result is zero (up to round-off errors).
Alternatively: for real vectors, xTAx = x · (Ax) = (Ax) · x, since x · y = y · x for dot products of real

vectors. But that means xTAx = (Ax) · x = (Ax)Tx = xTATx = −(xTAx), and as above this means it is
zero.
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(b) You can prove this very similarly to the proof from class that Hermitian matrices have real eigenvalues.
In particular, suppose we have an eigensolution (possibly complex) Ax = λx. If we take the dot product
with x, i.e. multiplying both sides by xH , we have:

xHAx = λxHx = λ‖x‖2 = (AHx)Hx = −(Ax)Hx = −(λx)Hx = −λ̄xHx = −λ̄‖x‖2

for any matrix with AH = −A (e.g. real A with AT = −A as we have here). But since eigenvectors are
nonzero, ‖x‖2 > 0 and the above equation implies:

λ = −λ̄ =⇒ λ+ λ̄ = 2 Reλ = 0

which means that λ is purely imaginary (its real part is zero).
Alternative proof : If AH = −A, then consider the matrix B = iA: BH = (iA)H = īAH = (−i)(−A) =

B, so B is Hermitian. The eigenvalues of B are therefore purely realy, and since A = −iB it follows that
the eigenvalues of A are −i times the (real) eigenvalues of B, hence the eigenvalues of A are imaginary.

Let’s check it in Julia:

In [8]: eigvals(A)

Out[8]: 5-element Array{Complex{Float64},1}:
3.29597e-17+3.81676im

3.29597e-17-3.81676im

-1.21431e-17+0.972632im

-1.21431e-17-0.972632im

-1.88558e-17+0.0im

Yup, the real parts are zero (the tiny real parts are just rounding errors).

(c) The determinant of A is the product of all eigenvalues. There are two cases:
First, if 0 is an eigenvalue of A, then detA = 0, which is nonnegative.
Second, if 0 is not an eigenvalue, we still know that all nonreal eigenvalues come in complex conjugate

pairs (since A is real). Since all eigenvalues are purely imaginary, all of the eigenvalues come in conjugate
pairs. So if

λ1, λ̄1, . . . , λk, λ̄k

are all the eigenvalues of A, arranged in complex conjugate pairs, the determinant of A is

detA = λ1λ̄1 · · ·λkλ̄k = |λ1|2 · · · |λk|2 > 0

which is positive, as promised.
Let us verify it with Julia:

In [9]: det(A)

Out[9]: 2.9325781323107414e-16

It was zero: because A has an odd size (5 × 5), there are two pairs of conjugate eigenvalues and the
remaining (nonpaired) eigenvalue must be zero. The same is true of any odd size.

Let’s also try an even-size matrix, which should give a positive determinant:

In [10]: A=randn(6,6); A=A-A’;

det(A)

Out[10]: 36.78553497706216
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(d) If dx
dt = At, then the solution is x(t) = eAtx(0). Hence:

‖x(t)‖2 = x(t)Tx(t) = x(0)T (eAt)T eAtx(0) = x(0)T eA
T teAtx(0) = x(0)T e−AteAtx(0) = x(0)Tx(0) = ‖x(0)‖2

as desired. We have used the fact that (eA)T = eA
T

, which is easily derived from the series expansion
eA = I +A+A2/2 + · · ·.

In fact, this proof shows that eAt is a unitary matrix (orthogonal matrix) for any AH = −A.
Alternative proof : Another way to show that something is constant is to show that the derivative is

zero, i.e. we can show d‖x‖/dt = 0. We can take the derivative simply by the product rule:

d‖x‖2

dt
=
d(xTx)

dt
=

(
dx

dt

)T

x+ xT
dx

dt
= (Ax)Tx+ xTAx = (xTATx) + xTAx = 0

where the last equality comes from part (a) and from the fact that both A and AT = −A are antisymmetric.
So the derivative of ‖x‖2 is 0, that is the norm squared is a constant function. Hence the norm, its square
root, is a constant function too.

Let us verify it with Julia for a randomly chosen t:

In [11]: x=randn(6)

t=rand() # random t in [0,1)

norm(x), norm(expm(A*t)*x)

Out[11]: (2.906887629744583,2.906887629744583)
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