
18.06 Spring 2018 Final - Solutions

1 (16 pts.)

The matrix A has a full SVD computed with Julia, where

A =


2 15 5 0 16

2 16 4 2 12

4 39 1 18 −4

 .

The result is A = UΣV T where

U =


−0.341643 −0.713606 −0.611593

−0.362087 −0.500572 0.786334

−0.867279 0.490095 −0.0873704



Σ =


48.46518677202946 0 0 0 0

0 21.520354810093167 0 0 0

0 0 0 0 0

 .

V =



−0.10062 −0.0217458 0.852961 0.292097 −0.420167

−0.923177 0.0186082 0.0386047 −0.380465 0.0339893

−0.0830254 −0.236066 0.309187 0.29878 0.867475

−0.33705 0.363403 −0.343575 0.793231 −0.0841173

−0.130861 −0.900773 −0.239433 0.226805 −0.25043
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1.(a) (4 pts.) We wish to know which vectors in U and V correspond to the nullspace, the

column space, the left nullspace, and the row space. Draw a box or circle around the vectors

in each of these subspaces and label your box/circle.

1. (b) (2 pts.) What is the rank r of A?

1. (c) (5 pts.) Find the complete solution to Ax = u2 where u2 is the second column of U .

(Okay to use symbols such as σ1, u1, or v1. Be sure to have the complete solution, not just

a solution.)

1. (d) (5 pts.) Ideally without precious time wasting computation, what is the determinant

of the first three columns (reproduced below) of A? Justify your answer.
2 15 5

2 16 4

4 39 1


Solution:

1. (a) There are two non-zero singular values and so this matrix has rank r = 2. The first

two columns of U are therefore a basis for the column space, while the first two columns

of V are a basis for the row space. The remaining one column of U is as basis for the left

nullspace, while the remaining three columns of V are a basis for the nullspace.

1. (b) As stated, there are two non-zero singular values and so this matrix has rank r = 2.

1. (c) We can use the SVD to write A in rank-r form, i.e.

A = σ1u1v
T
1 + σ2u2v

T
2

2



We can therefore identify that x = v2/σ2 is a particular solution, since

A
v2
σ2

= σ1u1v
T
1

(
v2
σ2

)
+ σ2u2v

T
2

(
v2
σ2

)
= u2v

T
2 v2 = u2

We can then add to this particular solution any multiple of independent vectors from the

nullspace. The complete solution is therefore

x =
v2
σ2

+ c1v3 + c2v4 + c3v5

where c1, c2 and c3 are arbitrary real constants.

1. (d) Since A is rank 2, any subset of its rows/columns can contain at most two linearly

independent vectors. Therefore the three rows of A must be linearly dependent and so∣∣∣∣∣∣∣∣∣
2 15 5

2 16 4

4 39 1

∣∣∣∣∣∣∣∣∣ = 0
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2 (11 pts.) For 2(a) and 2(b) compute the gradient with respect to A (ideally without matrix

elements or indices). It may be helpful to remember that trace(X)= trace(XT )=trace(XT I)

and trace (XY )=trace(Y X).

2. (a) (3 pts.) f(A) = trace(1
2
ATA), where the matrices are n× n.

2. (b) (3 pts.) f(A) = trace(A).

2. (c) (5 pts.) Compute d(exp .(A3)) in terms of A and dA. The dot indicates that we are

taking the exponential ex of every entry (not the matrix exponential). A3 is the usual matrix

multiplication of A times A times A.

Solution:

2. (a) We recall that the gradient ∇f of a scalar valued function of matrices may be found

via the identity

df = trace((∇f)TdA)

Applying the product rule to f(A) we have

df = trace(
1

2
(dA)TA) + trace(

1

2
AT (dA)) = trace(

1

2
ATdA) + trace(

1

2
AT (dA)) = trace(ATdA)

and so

∇f = A

2. (b) Using the same as the above, we have

df = trace(dA) = trace(ITdA)

and so

∇f = I
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2. (c) If h(x) is a scalar valued function of scalars, and h.A is this scalar function applied

elementwise to the components of A, then

dh = h′. ∗ dA,

where .∗ denotes elementwise multiplication. In this, our scalar function h(x) = exp(x) is

being applied elementwise to the components of A3, and so

dh = exp .(A3). ∗ d(A3) = exp .(A3). ∗ (A2(dA) + A(dA)A+ (dA)A2)
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3 (17 pts.)

Set up an idealized version of Bluebikes with bicycle stations in Allston, Boston, and Cam-

bridge where on any given day, a bicycle has a 40% chance of remaining in the same city

every night. There is a 30% chance of going to each of the other two cities. (Thus for

example a bicycle starting in Cambridge has a 30% chance of ending up in Boston and a

30% chance of ending up in Allston.)

3. (a) (5 pts.) Write down the relevant Markov Matrix.

3. (b) (2 pts.) Is your matrix in 3(a) diagonalizible?

3. (c) (5 pts.) What are the eigenvalues of your matrix in 3(a)?

3. (d) (5 pts.) Suppose that on the first day 90% of the bicycles are in Cambridge, 1% in

Allston, and 9% in Boston. What percentage of bicycles would you estimate would be in

Cambridge once the bicycles have reached steady state?

Solution:

3. (a) The Markov matrix in this case is

M =


0.4 0.3 0.3

0.3 0.4 0.3

0.3 0.3 0.4



3. (b) M is symmetric and therefore it is necessarily diagonalizable.

3. (c) Since M is a positive Markov matrix, it has exactly one eigenvalue equal to 1. If we

write down M − λI, we have

M − λI =


0.4− λ 0.3 0.3

0.3 0.4− λ 0.3

0.3 0.3 0.4− λ


We immediately can see that choosing λ = 0.1 will produce a singular eigenvalue. Finally,

the trace of M is 1.2, and so we can see that λ = 0.1 must be a repeated eigenvalue.

3. (d) The steady state vector is the vector corresponding to the eigenvalue λ = 1. Since M
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is symmetric we can identify that 
1

1

1


is an eigenvector of M corresponding to λ = 1. However, the components of the steady state

vector must sum to 1 because of conservation of probability. Hence in the long time limit,

the probability vector will tend to 
1/3

1/3

1/3


and so ∼ 33% of the bikes will be in Cambridge in the steady state limit.
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4 (12 pts.)

Give a brief and convincing argument for each statement. (Not an example.)

4. (a) (3 pts.) The 2019th power of a symmetric matrix is symmetric.

4. (b) (3 pts.) The 2019th power of a positive definite matrix is positive definite (at least

from the pure mathematics viewpoint).

4. (c) (3 pts.) The 2019th power of a permutation matrix is a permutation matrix.

4. (d) (3 pts.) The 2019th power of an orthogonal matrix is orthogonal.

Solution:

4. (a) If A is symmetric then A = AT . Then

(A2019)T = (AA...A)T = ATAT ...AT = AA...A = A2019

and so A2019 is symmetric.

4. (b) If A is positive definite then all of its eigenvalues are strictly positive. If λ > 0 is an

eigenvalue of A then λ2019 > 0 is an eigenvalue of A2019 and so all the eigenvalues of A2019

are positive and so A2019 is positive definite.

4. (c) A permutation matrix P acts to permute the elements of a vector v so that Pv has the

same components of v but reordered. Applying P to the vector v 2019 times will continue

to permute the elements of v and so P 2019 will also be a permutation matrix.

4. (d) An orthogonal matrix obeys QTQ = I. Notice that

(Q2019)T (Q2019) = (QTQT ...QT )(QQ...Q) = I

and so Q2019 is also an orthogonal matrix.
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5 (12 pts.)

The 5× 5 matrix A has a QR decomposition where R is the diagonal matrix with 1, 2, 3, 4, 5

on the diagonal, and 0 off the diagonal.

5. (a) (3 pts.) If a5 is the fifth column of A, what is ‖a5‖?

5. (b) (3 pts.) If a4 is the fourth column of A, what is the inner product of a4 and a5.

(Reminder this means compute aT4 a5) Explain your answer.

5. (c) (3 pts.) The linear transformation that takes x to Ax takes the five dimensional unit

cube to a parallelopiped. What is the unsigned volume of the image of the five dimensional

unit cube? (Remember this means the absolute value of the volume of the parallelopiped

determined by the columns of A.)

5. (d) (1 pt.) Pick the best one (without explanation) of {must be, might be, can’t be}:

The matrix A orthogonal.

5. (e) (1 pt.) Pick the best one (without explanation) of {must be, might be, can’t be}: The

matrix A (symmetric) positive definite.

5. (f) (1 pt.) Pick the best one (without explanation) of {must be, might be, can’t be}: The

columns of Q semi-axes of the ellpsoid that is the image of the unit sphere

under A.

Solution:

5. (a) Since R is a diagonal matrix, the column of A are parallel to the columns of Q, but

multiplied by the entries on the diagonal of R. We can therefore deduce that

a5 = 5q5 =⇒ ‖a5‖ = 5‖q5‖.

Since Q is an orthogonal matrix, all of its columns are normalized so that ‖qi‖ = 1, and so

‖a5‖ = 5

5. (b) We know that a4 = 4q4 and a5 = 5q5, and so

aT4 a5 = 20qT4 q5.

Since Q is orthogonal, its columns are mutually orthogonal and so qT4 q5 = 0, meaning that

aT4 a5 = 0
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5.(c) We know that the volume of the unit cube is 1. The image of the unit cube under the

transformation described by A will have unsigned volume | detA|. However, we know from

the QR factorization A = QR that

detA = detQ detR = ±(5× 4× 3× 2× 1) = ±120,

and so the unsigned volume of the unit cube under the transformation is 120.

5. (d) The matrix A can’t be orthogonal

5. (e) The matrix A might be positive definite

5. (f) The columns of Q must be semi-axes of the ellipsoid that is the image of the unit

sphere under A.
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6 (10 pts.)

6. (a) (6 pts.) Set up a matrix least squares problem if we are interested in taking n data

points (xi, yi) for i = 1, . . . , n and we wish to find the best function f(x) = c1 sin(x) +

c2 cos(x) + c3 tan(x) through the data points. Note: Setting up a matrix least squares

problem means setting up a matrix A and a vector b in a least squares equation such that

x = x̂ minimizes ‖Ax− b‖.

Also write the solution to the least squares problem in terms of the compact SVD of your

matrix.

6. (b) (4 pts.) Set up a matrix least squares problem if we are interested in taking n data

points (xi, yi, zi) in R3, and we wish to fit a function f(x, y) = c1e
x+y + c2 sin(x− y).

Solution

6. (a) (6 pts.) The least squares problem in this case is to minimize

‖Ax− b‖,

where

A =


sinx1 cosx1 tanx1

sinx2 cosx2 tanx2
...

...
...

sinxn cosxn tanxn

 , x =


c1

c2

c3

 , b =


y1

y2
...

yn


The least squares solution is

x̂ = V Σ−1r UT b

6.(b) The least squares problem in this case is to minimize

‖Ax− b‖,

where

A =


ex1+y1 sinx1 − y1
ex2+y2 sinx2 − y2

...
...

exn+yn sinxn − yn

 , x =

c1
c2

 , b =


z1

z2
...

zn
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7 (4 pts.) The 4x4 symmetric matrix A satisfies A2 = A and has all four diagonal elements

equal to 1/2.

The four roots to the equation det(A − λI) = 0 are not distinct. Allowing for multiple

eigenvalues, they are , , , and . (Provide a brief

explanation.)

Solution A symmetric matrix has real eigenvalues. If A2 = A, then the only possible

eigenvalues are 0 and 1. If all the diagonal elements are equal to 1/2 then Trace(A) = 2.

The only possible sum of 0 and 1 giving a trace of 2 is λ1 = λ2 = 0 and λ3 = λ4 = 1.
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8 (10 pts.)

There are six permutation matrices in R3. Let P1, P2, P3 be the three with determinant -1

(labelled arbitrarily.) The other three are I and P4 and P5.

8 (a) (4 pts.) Give an example of one permutation matrix with determinant -1, and one that

is not the identity but has determinant +1.

8. (b) (6 pts.) Consider the matrix 1000P1 + 800P3 + 6P5. Give an eigenvalue, eigenvector

pair for this matrix (ideally by not writing down the matrix).

Solution 8. (a) The 3× 3 permutation matrices with determinant −1 are

P1 =


0 1 0

1 0 0

0 0 1

 , P2 =


1 0 0

0 0 1

0 1 0

 , P3 =


0 0 1

0 1 0

1 0 0

 .

The remaining 3× 3 permutation matrices with determinant 1 are

P4 =


0 1 0

0 0 1

1 0 0

 , P5 =


0 0 1

1 0 0

0 1 0



8. (b) All permutation matrices have an eigenvector


1

1

1

 with eigenvalue 1. Therefore

M = 1000P1 + 800P3 + 6P5 has an eigenvector


1

1

1

 with eigenvalue 1000 + 800 + 6 = 1806.
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9 (8 pts.)

Given n numbers h1, . . . , hn, a Hankel matrix is defined as a matrix H such that Hij =

h|i−j|+1. They take the form

H =



h1 h2 h3 . . . hn−1 hn

h2 h1 h2 . . . hn−2 hn−1

h3 h2 h1 . . . hn−3 hn−2
...

...
...

. . .
...

hn−1 hn−2 hn−3 . . . h1 h2

hn hn−1 hn−2 . . . h2 h1


.

(a) (4 pts.) Are the set of Hankel matrices a vector subspace of symmetric n× n matrices?

(Explain)

(b) (4 pts.) Find a basis for the vector space of Hankel matrices. What is the dimension?

Solution 9. (a) Consider two Hankel matrices

H =



h1 h2 h3 . . . hn−1 hn

h2 h1 h2 . . . hn−2 hn−1

h3 h2 h1 . . . hn−3 hn−2
...

...
...

. . .
...

hn−1 hn−2 hn−3 . . . h1 h2

hn hn−1 hn−2 . . . h2 h1


, G =



g1 g2 g3 . . . gn−1 gn

g2 g1 g2 . . . gn−2 gn−1

g3 g2 g1 . . . gn−3 gn−2
...

...
...

. . .
...

gn−1 gn−2 gn−3 . . . g1 g2

gn gn−1 gn−2 . . . g2 g1


.

If we take an arbitrary linear combination aH + bG where a, b ∈ R then we obtain

aH+bG =



ah1 + bg1 ah2 + bg2 ah3 + bg3 . . . ahn−1 + bgn−1 ahn + bgn

ah2 + bg2 ah1 + bg1 ah2 + bg2 . . . ahn−2 + bgn−2 ahn−1 + bgn−1

ah3 + bg3 ah2 + bh2 ah1 + bh1 . . . ahn−3 + bgn−3 ahn−2 + bgn−2
...

...
...

. . .
...

ahn−1 + bgn−1 ahn−2 + bgn−2 ahn−3 + bhn−3 . . . ah1 + bg1 ah2 + bg2

ahn + bgn ahn−1 + bgn−1 ahn−2 + bgn−2 . . . ah2 + bg2 ah1 + bg1


which is a symmetric matrix in Hankel form. Therefore these form a vector subspace.
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9. (b) A possible basis for this vector space is the set of matrices Hm, where the hi = 0

except for i = m where hm = 1. This vector space has dimension n.
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