18.06 Problem Set 1 Solution

HW1.
a. 1) By definition.
b. 2) $0=v \cdot v=|v|^{2}$ so that $v=0$.
c. 4) By definition.
d. True. Notice that $\|w\|=\|-w\|$, so this is exactly the triangle inequality.
e. 2) Let the angle between the two vectors be θ. Then $\cos \theta=\frac{|v \cdot w|}{\|v\| \cdot\|w\|}=\frac{1}{\sqrt{2}}$. So we know $\theta=\pi / 4$.
f. 2. This is the geometric interpretation of determinant.

HW2.
a. 3). $x=y=z=0$ does not satisfy this equation, so it does not pass through 0.
b. $(2,3,4)$.
c. d). This is the sphere centered at 0 , with radius 1 .
d. $(2 \mathrm{x}, 2 \mathrm{y}, 2 \mathrm{z})$.
e. $(2,3,4)$.
f. $(2 x, 2 y, 2 z)$.
g. This is one side of the space separated by the plane $2 x+3 y+4 z=2020$ where the origin lies in.

HW3.
a. Yes. For any two 3×3 matrices A, B, and any real numbers $\lambda, \mu, \lambda A+\mu B$ is also a 3×3 matrix by definition.
b. No. For any such a matrix $A, 0 \cdot A=0$ is not in this set.
c. Yes. For any two 3×3 matrices $A=\left(A_{i j}\right), B=\left(B_{i j}\right)$ from this set, we have $\sum_{1 \leq i, j \leq 3} A_{i j}=\sum_{1 \leq i, j \leq 3} B_{i j}=0$. For any real numbers $\lambda, \mu, \lambda A+\mu B=\left(\lambda A_{i j}+\mu B_{i j}\right)$ is also a 3×3 matrix, and that the sum of all entries is $\sum_{1 \leq i, j \leq 3}\left(\lambda A_{i j}+\mu B_{i j}\right)=$ $\lambda \sum_{1 \leq i, j \leq 3} A_{i j}+\mu \sum_{1 \leq i, j \leq 3} B_{i j}=0$.
d. Yes. There is only one element in this set, which is 0 . This is a vector space, as $\lambda \cdot 0=0$ for any real number λ.
e. Yes. For any two diagonal matrices matrices A, B, entries are 0 except for the entries on the main diagonal. For any real numbers λ, μ, entries of $\lambda A+\mu B$ are 0 except for the entries on the main diagonal, hence $\lambda A+\mu B$ is also a diagonal matrix.

HW4.
a. Yes. For any two constant functions $f(x)=c_{1}, g(x)=c_{2}$, and any real numbers $\lambda, \mu, \lambda f(x)+\mu g(x)=\lambda c_{1}+\mu c_{2}$ is also a constant function.
b. Yes. For any two such functions $f(x), g(x)$, and any real numbers $\lambda, \mu, \lambda f(0)+$ $\mu g(0)=0$. So it is also a function in this set.
c. No. For any such function $f(x), 0 \cdot f(x)=0$ takes 0 at 0 instead of 17 .
d. Yes. For any two such functions $f(x), g(x)$, and any real numbers $\lambda, \mu, \lambda f(17)+$ $\mu g(17)=0$. So it is also a function in this set.
e. No. For any such function $f(x), 0 \cdot f(x)=0$ takes 0 at 17 instead of 17 .

HW5
a. 225
b. 7.416198487095663
31.28897569432403
c. $\cos \theta=\frac{225}{7.416198487095663 \times 31.28897569432403}=0.9696384473317716$.
$\theta=0.24704836030593655=14.154828622612804^{\circ}$.
g. $A^{2}=\left(\begin{array}{ccc}30 & 36 & 42 \\ 66 & 81 & 96 \\ 102 & 126 & 150\end{array}\right)$
$\left(\begin{array}{ccc}1 & 4 & 9 \\ 16 & 25 & 36 \\ 49 & 64 & 81\end{array}\right)$
h. $x=\left(\begin{array}{c}0.0349648997349724 \\ 0.251622660194788 \\ 0.43773815598541144\end{array}\right)$

