(1)
(a) $\left(\begin{array}{ccc}A^{\top} A & A^{\top} B & A^{\top} C \\ B^{\top} A & B^{\top} B & B^{\top} C \\ C^{\top} A & C^{\top} B & C^{\top} C\end{array}\right)$ and $A A^{\top}+B B^{\top}+C C^{\top}$
(b) The matrices $A^{\top} A, B^{\top} B$, and $C^{\top} C$ are identity matrices. The matrices $A^{\top} C, B^{\top} C$, and $A^{\top} B$ are zero.
(c) They are equal to $A A^{\top}, B B^{\top}$, and $C C^{\top}$, respectively, and their sum is the identity matrix. They are (orthogonal) projection matrices.
(2) (a) The functions of the form $f(x)=a$.
(b) The functions of the form $f(x)=a+b x+c \sin (x)+d \cos (x)$.
(c) The rank is 4 .
(d) A solution would be a function $g(x) \in F$ satisfying $g^{\prime}(x)=f(x)$, i.e. an antiderivative of $f(x)$.
(e) If $f(x)$ lies in the column space, then there are infinitely many solutions, because if $g(x)$ is an antiderivative, then so is $g(x)+c$ for any $c \in \mathbb{R}$.

Remark: This corresponds to the description of the nullspace given in (a).
(3) The vectors span the subspace of \mathbb{R}^{4} cut out by the equation $x_{1}+x_{2}+x_{3}+x_{4}=0$. The dimension of this subspace is 3 , so the answer is 3 .
(4) (a) All three singular values of A are nonzero, $\operatorname{son} \operatorname{rank}(A)=3$. This implies that A has three independent columns.
(b) One of the singular values of A is approximately zero.
(5) Yes to the first question. No to the second question.

Explanation: Every basis of S can be extended to a basis of \mathbb{R}^{3} by adjoining a vector in $\mathbb{R}^{3} \backslash S$. On the other hand, a basis for \mathbb{R}^{3} need not contain any elements of S.
(6) (a) False. Counterexample is any $n \times m$ matrix of rank n, with $n<m$, such as (1 1).
(b) False. Counterexample is $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
(c) True. We have $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top}\right)$, as can be seen from taking an SVD written as $A=U \Sigma V^{\top}$ and comparing with the SVD given by $A^{\top}=V \Sigma^{\top} U^{\top}$.
(d) False. Counterexample is any $n \times m$ matrix with rank $<m$, such as(1 1).
(7) All $n \times n$ matrices. All $n \times n$ matrices if $n>1$, and $\{(0)\}$ if $n=1$. All $n \times n$ upper triangular matrices.

Explanation: To see that any $n \times n$ matrix A is a sum of two invertible matrices, take a (full) SVD written as $A=U \Sigma V^{\top}$. Express $\Sigma=\Psi_{1}+\Psi_{2}$ where Ψ_{1} and Ψ_{2} are diagonal matrices whose diagonal entries are all nonzero. Then Ψ_{1} and Ψ_{2} are invertible, so $A=U \Psi_{1} V^{\top}+U \Psi_{2} V^{\top}$ is a sum of two invertible matrices.

In the Lecture 9 notes, we saw that any $n \times n$ matrix can be expressed as a sum of at most n rank 1 matrices. If $n>1$, then any rank 1 matrix is singular, so this shows that all $n \times n$ matrices can be expressed as sums of singular matrices. If $n=1$, then the only singular matrix is (0).

The set of $n \times n$ upper triangular matrices is already a vector subspace (by a previous homework), and the span of the elements of any vector subspace is the vector subspace itself.
(8) (a) If ($A \mid b)$ is invertible, then its columns must be linearly independent. Therefore, b does not lie in the span of the columns of A. This implies that $A x=b$ has no solution.
(b) If $(A \mid b)$ is singular, it must have a nonzero nullspace. Let $y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$ be a nonzero vector in the nullspace. If $y_{5}=0$, then $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ is nonzero and lies in the nullspace of A, contradicting the assumption that $\operatorname{rank}(A)=4$. Therefore $y_{5} \neq 0$. By scaling the vector y, we may assume that $y_{5}=-1$. Then $x:=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ is a solution to $A x=b$.
(9) Yes. Proof: If A_{1} and A_{2} are 3×3 matrices which lie in this set, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, then

$$
\left(\lambda_{1} A_{1}+\lambda_{2} A_{2}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\lambda_{1} A_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\lambda_{2} A_{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

is a sum of multiples of $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, so it is a multiple of $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, so $\lambda_{1} A_{1}+\lambda_{2} A_{2}$ lies in the set. Therefore, this set is a vector subspace of the vector space of all 3×3 matrices.
(10) A basis for the first vector space is $\left\{1, x, x^{2}, x^{3}\right\}$.

A basis for the second vector space is $\left\{x-1,(x-1)^{2},(x-1)^{3}\right\}$.

