(1) (a)
$$\begin{pmatrix} A^{\top}A & A^{\top}B & A^{\top}C \\ B^{\top}A & B^{\top}B & B^{\top}C \\ C^{\top}A & C^{\top}B & C^{\top}C \end{pmatrix}$$
 and $AA^{\top} + BB^{\top} + CC^{\top}$

- (b) The matrices $A^{\top}A$, $B^{\top}B$, and $C^{\top}C$ are identity matrices. The matrices $A^{\top}C$, $B^{\top}C$, and $A^{\top}B$ are zero.
- (c) They are equal to AA^{\top}, BB^{\top} , and CC^{\top} , respectively, and their sum is the identity matrix. They are (orthogonal) projection matrices.
- (2) (a) The functions of the form f(x) = a.
 - (b) The functions of the form $f(x) = a + bx + c\sin(x) + d\cos(x)$.
 - (c) The rank is 4.
 - (d) A solution would be a function $g(x) \in F$ satisfying g'(x) = f(x), i.e. an antiderivative of f(x).
 - (e) If f(x) lies in the column space, then there are infinitely many solutions, because if g(x) is an antiderivative, then so is g(x) + c for any $c \in \mathbb{R}$.

Remark: This corresponds to the description of the nullspace given in (a).

- (3) The vectors span the subspace of \mathbb{R}^4 cut out by the equation $x_1 + x_2 + x_3 + x_4 = 0$. The dimension of this subspace is 3, so the answer is 3.
- (4) (a) All three singular values of A are nonzero, so rank(A) = 3. This implies that A has three independent columns.
 - (b) One of the singular values of A is approximately zero.
- (5) Yes to the first question. No to the second question.

Explanation: Every basis of S can be extended to a basis of \mathbb{R}^3 by adjoining a vector in $\mathbb{R}^3 \setminus S$. On the other hand, a basis for \mathbb{R}^3 need not contain any elements of S.

- (6) (a) False. Counterexample is any $n \times m$ matrix of rank n, with n < m, such as $\begin{pmatrix} 1 & 1 \end{pmatrix}$.
 - (b) False. Counterexample is $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
 - (c) True. We have $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$, as can be seen from taking an SVD written as $A = U\Sigma V^{\top}$ and comparing with the SVD given by $A^{\top} = V\Sigma^{\top}U^{\top}$.
 - (d) False. Counterexample is any $n \times m$ matrix with rank < m, such as $\begin{pmatrix} 1 & 1 \end{pmatrix}$.
- (7) All $n \times n$ matrices. All $n \times n$ matrices if n > 1, and $\{(0)\}$ if n = 1. All $n \times n$ upper triangular matrices.

Explanation: To see that any $n \times n$ matrix A is a sum of two invertible matrices, take a (full) SVD written as $A = U\Sigma V^{\top}$. Express $\Sigma = \Psi_1 + \Psi_2$ where Ψ_1 and Ψ_2 are diagonal matrices whose diagonal entries are all nonzero. Then Ψ_1 and Ψ_2 are invertible, so $A = U\Psi_1V^{\top} + U\Psi_2V^{\top}$ is a sum of two invertible matrices.

In the Lecture 9 notes, we saw that any $n \times n$ matrix can be expressed as a sum of at most n rank 1 matrices. If n > 1, then any rank 1 matrix is singular, so this shows that all $n \times n$ matrices can be expressed as sums of singular matrices. If n = 1, then the only singular matrix is (0).

The set of $n \times n$ upper triangular matrices is already a vector subspace (by a previous homework), and the span of the elements of any vector subspace is the vector subspace itself.

(8) (a) If $\begin{pmatrix} A & b \end{pmatrix}$ is invertible, then its columns must be linearly independent. Therefore, b does not lie in the span of the columns of A. This implies that Ax = b has no solution.

- (b) If $(A \mid b)$ is singular, it must have a nonzero nullspace. Let $y = (y_1, y_2, y_3, y_4, y_5)$ be a nonzero vector in the nullspace. If $y_5 = 0$, then (y_1, y_2, y_3, y_4) is nonzero and lies in the nullspace of A, contradicting the assumption that rank(A) = 4. Therefore $y_5 \neq 0$. By scaling the vector y, we may assume that $y_5 = -1$. Then $x := (y_1, y_2, y_3, y_4)$ is a solution to Ax = b.
- (9) Yes. Proof: If A_1 and A_2 are 3×3 matrices which lie in this set, and $\lambda_1, \lambda_2 \in \mathbb{R}$, then

$$(\lambda_1 A_1 + \lambda_2 A_2) \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \lambda_1 A_1 \begin{pmatrix} 1\\1\\1 \end{pmatrix} + \lambda_2 A_2 \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

is a sum of multiples of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, so it is a multiple of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, so $\lambda_1 A_1 + \lambda_2 A_2$ lies in the set. Therefore, this set is a vector subspace of the vector space of all 3×3 matrices.

(10) A basis for the first vector space is $\{1, x, x^2, x^3\}$.

A basis for the second vector space is $\{x - 1, (x - 1)^2, (x - 1)^3\}$.