Problem Set 6 Solution

Kai Huang

Prob 1 (GS p. 161 Problem 24) Give examples of matrices A for which the number of solutions to $A x=b$ is
(a) 0 or 1 , depending on b

Example: $A=\binom{0}{1}$. Check: $A x=\binom{0}{x}$, so that $A x=b$ has a unique solution if $b=\binom{0}{b_{2}}$ and no solution if $b_{1} \neq 0$.
(b) ∞, regardless of b

Example: $A=\left(\begin{array}{ll}1 & 0\end{array}\right)$. Check: $A x=A\binom{x_{1}}{x_{2}}=x_{1}$, so that $A x=b$ has infinitely many solutions $x_{1}=b, x_{2} \in \mathbb{R}$.
(c) 0 or ∞, depending on b

Example: $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Check: $A x=A\binom{x_{1}}{x_{2}}=\binom{x_{1}}{0}$, so that $A x=b$ has infinitely many solutions $x_{1}=b, x_{2} \in \mathbb{R}$ if $b_{2}=0$, and no solution if $b_{2} \neq 0$.
(d) 1 , regardless of b

Example: $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Check: A is a 2 by 2 invertible matrix, so any equation $A x=b$ has a unique solution $x=A^{-1} b$.

Prob 2 (Inspired by GS p163 Problem 34). Suppose A is 3 by 4 and the nullspace consists of multiples of $s=(2,3,1,0)$.
(a) What are the dimensions of the four fundamental subspaces?

Since $\operatorname{null}(A)=\{\lambda s \mid \lambda \in \mathbb{R}\}$, so $\operatorname{dim} \operatorname{null}(A)=1$. Recall that for an $m \times n$ matrix A, $\operatorname{dim} \operatorname{null}(A)=n-\operatorname{rank}(A)$, so we $\operatorname{know} \operatorname{rank}(A)=3$.

Recall that $\operatorname{dim} \operatorname{col}(A)=\operatorname{dim} \operatorname{row}(A)=\operatorname{dim} \operatorname{rank}(A), \operatorname{dim} \operatorname{null}\left(A^{T}\right)=m-\operatorname{dim} \operatorname{rank}(A)$. So $\operatorname{dim} \operatorname{col}(A)=\operatorname{dim} \operatorname{row}(A)=3, \operatorname{dim} \operatorname{null}(A)=1, \operatorname{dim} \operatorname{null}\left(A^{T}\right)=0$.
(b) How do you know that $A x=b$ can be solved for all b ?

The equation $A x=b$ can be solved is equivalent to say $b \in \operatorname{col}(A)$. We know $\operatorname{dim} \operatorname{col}(A)=3$ and $\operatorname{col}(A) \subset \mathbb{R}^{3}$. So $\operatorname{col}(A)=\mathbb{R}^{3}$. In other words, any $b \in \mathbb{R}^{3}$ lies inside $\operatorname{col}(A)$, so $A x=b$ can be solved.

Prob 3 (GS p. 177 Problem 18) Suppose $v_{1}, v_{2}, \ldots, v_{6}$ are six vectors in \mathbb{R}^{4}.
(a) Those vectors (do)(do not)(might not) span \mathbb{R}^{4}.
(b) Those vectors (are)(are not) (might be) linearly independent.

Consider the 4 by 6 matrix A whose column vectors are precisely v_{i}. If v_{i} are linearly independent, then $\operatorname{dim} \operatorname{col}(A)=6$. But $\operatorname{dim} \operatorname{col}(A)=\operatorname{dim} \operatorname{rank}(A)=$ $\operatorname{dim} \operatorname{row}(A) \leq 4$. This is a contradiction.
(c) Any four of those vectores (are)(are not)(might be) a basis for \mathbb{R}^{4}.

Prob 4 (Inspired by GS p. 192 Problem 21). Under what possible conditions is the matrix $A=u v^{T}+w z^{T}$ not of rank 2?

We have $\operatorname{col}\left(u v^{T}\right) \subset \operatorname{col}(u)=\{\lambda u \mid \lambda \in \mathbb{R}\}, \operatorname{col}\left(w z^{T}\right) \subset \operatorname{col}(w)=\{\lambda w \mid \lambda \in \mathbb{R}\}$. If $\{\lambda u \mid \lambda \in \mathbb{R}\}=\{\lambda w \mid \lambda \in \mathbb{R}\}$. Then $\operatorname{col}(A)=\{\lambda w \mid \lambda \in \mathbb{R}\}$, so $\operatorname{rank}(A) \leq 1$ (could be 0 if $u=w=0$). Also if v, z are colinear, same argument shows $\operatorname{rank}(A) \leq 1$.

If both of these conditions are not true, then $\operatorname{col}(A)=\{\lambda u+\mu w \mid \lambda, \mu \in \mathbb{R}\}$, so $\operatorname{rank}(A)=\operatorname{dim} \operatorname{col}(A)=2$.

So the condition is u and w are colinear or v and z are colinear.
Prob 5 (GS p. 203 Inspired by Problem 10). If A is symmetric, why is the column space perpendicular to the nullspace?

We know the $\operatorname{row}(A) \perp \operatorname{null}(A)$. Since $A^{T}=A$, so $\operatorname{col}(A)=\operatorname{row}\left(A^{T}\right)=\operatorname{row}(A)$, so $\operatorname{col}(A) \perp \operatorname{null}(A)$.

Prob 6 (GS p. 202 Problem 4). If $A B=0$ then the columns of B are in the null space of A. The rows of A are in the left null space of B. With $A B=0$, why can't A and B be 3×3 matrices of rank 2 ?

Since we have $\operatorname{col}(B) \subset \operatorname{null}(A)$, so $\operatorname{dim} \operatorname{col}(B) \leq \operatorname{null}(A)$. Recall that $\operatorname{dim} \operatorname{col}(B)=$ $\operatorname{rank}(B), \operatorname{dim} \operatorname{null}(A)=3-\operatorname{rank}(A)$, so $\operatorname{rank}(B) \leq 3-\operatorname{rank}(A)$. Hence $\operatorname{rank}(A)+$ $\operatorname{rank}(B) \leq 3$. So they cannot both have rank 2 .

Prob 7 (GS p. 204 Problem 24). Suppose an $n \times n$ matrix is invertible: $A A^{-1}=I$. Then the first column of A^{-1} is orthogonal to the space spanned by which rows of A ?

Let A be $\left(\begin{array}{c}v_{1}^{T} \\ v_{2}^{T} \\ \ldots \\ v_{n}^{T}\end{array}\right)$, where v_{i}^{T} is its i-th row vector. Let A^{-1} be $\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right)$, where u_{i} is its i-th column vector. Then $A A^{-1}=I$ gives us $v_{i}^{T} u_{1}=0$ if $i \neq 1$ and 1 if $i=1$. So the first column of A^{-1} is orthogonal to the space spanned by the 2nd,3rd,...,n-th rows of A.

Prob 8. Given an $m \times n$ matrix A. What are the possible dimensions?
(A) $\operatorname{dim}(\operatorname{col}(A))=\operatorname{rank}(A)=0,1, \ldots, \min (m, n)$
(B) $\operatorname{dim}(\operatorname{row}(A))+\operatorname{dim}(\operatorname{null}(A))=\underline{n}$
(C) the sum of the dimensions of the four fundamental subspaces $=\underline{m+n}$
(D) $\operatorname{dim}(\operatorname{col}(A))+\operatorname{dim}(\operatorname{row}(A))=\underline{2 \operatorname{rank}(A)=0,2,4, \ldots, 2 \min (m, n)}$

Prob 9. Suppose $y_{1}(x), y_{2}(x), y_{3}(x), y_{4}(x)$ are four non-zero polynomials of degree at most 2. (This means the functions have the form $a x+b x+c$, where at least one of the coefficients is nonzero.) What possibilities are there in the dimension of the vector space spanned by $y_{1}(x), y_{2}(x), y_{3}(x), y_{4}(x)$? Give examples for each possibility and explain briefly why no other dimension can happen.

Since $a x^{2}+b x+c=\left(\begin{array}{lll}a & b & c\end{array}\right)\left(\begin{array}{c}x^{2} \\ x \\ 1\end{array}\right)$, we can view y_{i} as a triple $\left(\begin{array}{lll}a_{i} & b_{i} & c_{i}\end{array}\right)$. So
they lies in \mathbb{R}^{3}. So the subspace spanned by them is at most 3 dimensional.
The dimension can not be 0 . Because all y_{i} are nonzero.
The dimension can be 1 . For example, $y_{1}=y_{2}=y_{3}=y_{4}=1$.
The dimension can be 2 . For example, $y_{1}=y_{2}=y_{3}=1, y_{4}=x$.
The dimension can be 3 . For example, $y_{1}=y_{2}=1, y_{3}=x, y_{4}=x^{2}$.
Prob 10. A reflector is defined as a matrix of the form $Q=I-2 u u^{T}$ where $\|u\|=1$.
(A) Show that a reflector is orthogonal by showing that Q is symmetric and $Q^{2}=I$.
$Q^{T}=\left(I-2 u u^{T}\right)^{T}=I-2\left(u u^{T}\right)^{T}=I-2 u u^{T}=Q$. So Q is symmetric.
$Q^{2}=\left(I-2 u u^{T}\right)\left(I-2 u u^{T}\right)=I-4 u u^{T}+4 u u^{T} u u^{T}$. Notice that $1=\|u\|^{2}=u^{T} u$, so $4 u\left(u^{T} u\right) u^{T}=4 u u^{T}$, so $Q^{2}=I$.
(B) Explain briefly why this makes Q orthogonal.

We have $Q Q^{T}=Q Q=I$. By definition of orthogonal matrix, we know Q is orthogonal.

