
Spring 18.06 – Homework B Solutions

(1) (a) An n× n matrix M is Toeplitz if and only if these equations are satisfied:

Mi,j = Mi+k,j+k

for all positive integers i, j, k such that i+k, j+k ≤ n. Since addition and scalar multiplication
of matrices occurs elementwise, any linear combination of Toeplitz matrices will still be Toeplitz,
because these equations are linear. Therefore, n× n Toeplitz matrices are a vector space.

(b) An n× n Toeplitz matrix is specified by 2n− 1 independent real numbers, so the dimension of
this space is 2n− 1.

(c) M 7→M> works.

(d) No. A counterexample is given by

M =

0 1 0
1 0 1
0 1 0

 .

This problem is tricky because there is no 1× 1 or 2× 2 counterexample.

(e) Yes. They are the intersection of the space of Toeplitz matrices with the space of symmetric
matrices. The intersection of two vector subspaces is a vector subspace.

(2) The answer is −(A−2)>.

To see this, treat the entries of A as variables, and consider the matrix of differentials

dA :=

da11 da12 · · ·
da21 da22 · · ·

...
...

. . .


as usual. Let’s apply d(−) to the matrix identity AA−1 = Id. On the one hand,

d(Id) = 0

since Id doesn’t change when the entries of A change. On the other hand, the Leibniz rule implies

d(AA−1) = (dA)A−1 +A(dA−1).

Thus, we conclude that

0 = (dA)A−1 +A(dA−1),

which implies that dA−1 = −A−1(dA)A−1.

Next, we apply this to f(A). By linearity and cyclic invariance of trace, we have

d(f(A)) = d(trace(A−1))

= trace(dA−1)

= trace(−A−1(dA)A−1)

= trace(−(dA)A−2).

The coefficient of daij in this trace is −(A−2)ji. (This is the (j, i)-th entry of the matrix −A−2.)
Therefore, the gradient of f(A) is −(A−2)>.

Concretely, this means that if the (i, j)-th entry of A is modified by adding small real number ε,
while all other entries of A remain fixed, then the value f(A) is modified by adding the real number
−(A−2)ji ε.

(3) (a) False. We have

exp

(
0 1
0 0

)
=

(
1 1
0 1

)
which is not symmetric. We remark that eA is not even defined when A is not square.
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(b) True. If A is a (real) symmetric matrix, we can write A = V DV > where V is orthogonal and
D is diagonal. Then

eA = V eDV >.

The matrix eD is positive definite because it is diagonal with all diagonal entries positive, and
conjugating by the orthogonal matrix V preserves this property.

(c) False. We have

exp(−1) = (e−1),

and (−1) is orthogonal but (e−1) is not.

(d) The convention, used on Wikipedia and in Strang’s book, is that a ‘positive definite matrix’ is
implicitly symmetric. Therefore, the present statement is true because statement (b) is true.

Remark. If one drops this convention, then the answer becomes false. A student deserves at
least partial credit if they find a counterexample which demonstrates this. One example is

A =

(
1 −2
2 1

)
,

which does satisfy x>Ax ≥ 0 (for x ∈ R2) with equality if and only if x = 0. On the other

hand, writing A = Id +2

(
0 −1
1 0

)
allows one to compute that

eA = e

(
cos(2) − sin(2)
sin(2) cos(2)

)
.

This matrix does not satisfy x>eAx ≥ 0, as can be seen by taking x =

(
1
0

)
.

(e) True. If D is diagonal with entries d1, d2, . . ., then eD is diagonal with entries ed1 , ed2 , . . ..

(4) This is proved in Section 6.4 of Strang’s book. We rewrite the proof here.

Let S be a symmetric matrix, and let x be an eigenvector with eigenvalue λ. A priori, x may
have complex entries and λ may be a complex number. Let x be the vector whose entries are the
complex conjugates of the entries of x.

Let’s compute x>Sx in two different ways.

First, Sx = λx implies that x>Sx = λ x>x.

Second, taking conjugate-transpose of Sx = λx yields x>S = λx>. (We have used that S is real

and symmetric, so S
>

= S.) Right-multiplying by x yields x>S = λ x>x.

Thus, we conclude that λ x>x = λ x>x.

We would like to divide by x>x. We may do so because this is a positive real number: it is
the sum of squared magnitudes of the complex number entries of x, which is nonzero because x is
nonzero (since it’s an eigenvector). We conclude that λ = λ, so λ is real.

(5) Since S is real and symmetric, we can write S = V DV > where V is orthogonal and D is diagonal.
The problem allows us to assume that each diagonal entry of D is positive.

Lemma. For y ∈ Rn, we have y>Dy ≥ 0 with equality if and only if y = 0.

Proof. If y1, . . . , yn are the entries of y, and d1, . . . , dn are the diagonal entries of D, then

y>Dy = d1y
2
1 + d2y

2
2 + · · ·+ dny

2
n.

The claim follows from the hypothesis that all the di are positive. �

We deduce that

x>V DV >x = (V >x)>D(V >x) ≥ 0,
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with equality if and only if V >x = 0, i.e. if x = 0. 6

(6) (a) False. The matrix

(
0 1
0 0

)
has a singular value of 1, but all eigenvalues are zero.

(b) False. The matrix from (a) has one nonzero singular value, but no nonzero eigenvalue.

(c) True. The best way to prove this is to observe that, for any matrix A, there are diagonalizable
matrices M which are arbitrarily close to A. (See the discussion on page 343 of Section 6.4 of
Strang’s book.) If M is diagonalizable, we can write M = V DV −1 where the diagonal entries
of D are the eigenvalues of M . Then the eigenvalues of M2 = V D2V −1 are the squares of the
eigenvalues of M . As M approaches A, this conclusion transfers to A because eigenvalues vary
continuously with the entries of the matrix.

(d) False. The matrix from (a) has singular values {0, 1}, but its square is

(
0 0
0 0

)
which has

singular values {0, 0}.

(e) True. If A is invertible, its SVD looks like A = UΣV > where U and V are square orthogonal
matrices and Σ is an invertible diagonal matrix. Then A−1 = V Σ−1U> is the SVD for A−1.
The claim follows from the fact that Σ−1 is the diagonal matrix whose diagonal entries are the
reciprocals of those of Σ.

(f) False. The matrix (
1 1
0 0

)
=

(
1 0
0 1

)(√
2 0

0 0

)( 1√
2

1√
2

− 1√
2

1√
2

)
is Markov, but the SVD shown above indicates that its singular values are {

√
2, 0}. If (following

Strang) one wants a Markov matrix to also have strictly positive entries, then one obtains a
counterexample by perturbing the above matrix by a small amount:(

1− ε 1− ε
ε ε

)
Since the singular values vary continuously with the entries of the matrix, for sufficiently small
ε > 0, the singular values of this matrix will also not be equal to 1.

This problem is tricky because any symmetric Markov matrix does have a singular value
equal to 1, because, if a matrix is symmetric, then its singular values and eigenvalues coincide.

(g) True.

Lemma. Any eigenvalue of a square orthogonal matrix satisfies |λ| = 1.

Proof. 1 If U is orthogonal, then U>U = Id by definition. Let x be an eigenvector of U ,
with eigenvalue λ. As in the solution to (4), taking conjugate-transpose of Ux = λx gives
x>U> = λx>. (We used that U has real entries.) Multiplying these equations together implies

x>U>Ux = |λ|2x>x.
The LHS equals x>x. As in (4), x>x is a positive real number, so we can divide by it to find
that 1 = |λ|2. �

The eigenvalues of a 3 × 3 orthogonal matrix are the roots of a cubic polynomial with real
coefficients. These roots appear in complex conjugate pairs, so at least one root must be real.
The lemma implies that this real root is ±1, as desired.

Remark. The geometric meaning of this problem is that every rotation in 3-dimensional space
has a fixed line, called the axis of rotation. That line will be an eigenspace with eigenvalue ±1.
Our solution generalizes to show that a rotation in Rn admits a fixed line if n is odd. (A degree

1See https://math.stackexchange.com/a/653143

https://math.stackexchange.com/a/653143
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n real polynomial must have a real root if n is odd.) But a rotation in Rn when n is even need
not have a fixed line. This is the first hint that rotation groups behave differently in even and
odd dimensions.

(h) True. If P is a projection matrix, then null(P ) is the space of eigenvectors with eigenvalue 0,
and col(P ) is the space of eigenvectors with eigenvalue 1 (because x = Py for some y if and only
if x = Px). The space col(P ) is the space you are projecting onto, while null(P ) is the space
that is killed under the projection. These two spaces collectively span the domain of P , so we
can find a basis consisting of eigenvectors of P , with eigenvalues 0 and 1. Therefore, these are
the only eigenvalues of P (and P is diagonalizable).

(7) (a) rank(B) = 2.

(b) det(B>B) = 0.

(c) Cannot be determined. (The eigenvalues of B>B are the squares of the singular values of B.
The singular values of B cannot be determined from the eigenvalues of B.)

(d) The eigenvalues are {1, 12 ,
1
5}.

(8) Let λi be the diagonal entries of Λ, which are positive because A is positive definite. Let v1, . . . , vn
be the columns of Q.

The axes point in the directions specified by v1, . . . , vn.

The semiaxis length for the axis in direction vi is 1√
λi

.

(9) det(2M) = 22020 det(M).

(10) We have rank(P ) = trace(P ). This follows from our solution to (6.h). Indeed, the rank of P is the
dimension of col(P ), which is the multiplicity of the eigenvalue 1, which is the sum of eigenvalues of
P (since all eigenvalues are 0 or 1), which is the trace of P .


