18.06 Professor Edelman Quiz 1 February 28, 2020

Your easy to read printed name is:

\qquad
(We need your name on every page for gradescope.)
(Exam ends at 11:55am.)
Please circle your recitation:

(1)	T 10	$36-155$	Yau Wing Li
(2)	T 10	$36-153$	Sung Woo Jeong
(3)	T 11	$36-153$	Sung Woo Jeon
(4)	T 12	$2-146$	Yau Wing Li
(5)	T 12	$2-136$	James Tao
(6)	T 1	$2-136$	James Tao
(7)	T 1	$2-142$	Kai Huang
(8)	T 2	$2-136$	Kai Huang
(9)	T 3	$2-136$	Yu Pan

Important Instructions: We will be using Gradescope. Please write on one side only of a page. If you need extra pages, please write continued, and on the extra pages clearly label with problem number and letter.

Name: \qquad

1 (20 pts.)

For each set below, decide if it is or is not a vector space. Explain briefly why or why not.

1. (a) (4 pts.) All 10×2 tall-skinny orthogonal matrices.

Answer: No 0 times a tall-skinny orthogonal matrix is not a tall-skinny orthogonal matrix any more.

1. (b) (4 pts.) All polynomials in x that are 0 at $x=1806$ and $x=2000$.

Answer: Yes For any function $f(x), g(x)$ that are 0 when $x=1806$ and 2000, $k f(x)+l g(x)$, for any $k, l \in \mathbb{R}$ would be 0 when $x=1806$ and 2000 .

1. (c) (4 pts.) All $(n+1) \times n$ matrices of the form $\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ v_{1} & 0 & \cdots & 0 \\ 0 & v_{2} & \ldots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & v_{n}\end{array}\right)$.

Answer: Yes Suppose A, B are matrices of the required form with the shifted diagonal being a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n}. Then for any $k, l \in \mathbb{R}$, the matrix $k A+l B$ is also of the required form with the shifted diagonal being $k a_{1}+l b_{1}, \cdots, k a_{n}+l b_{n}$.

1. (d) (4 pts.) All functions $f(x)$ of the form $c_{1} e^{x}+c_{2} e^{-x}$, where c_{1} and c_{2} are real scalars.

Answer: Yes If $f(x)=c_{1} e^{x}+c_{2} e^{-x}$ and $g(x)=d_{1} e^{x}+d_{2} e^{-x}$, then, for any $k, l \in \mathbb{R}$, $k f(x)+l g(x)=\left(k c_{1}+l d_{1}\right) e^{x}+\left(k c_{2}+l d_{2}\right) e^{-x}$.

1. (e) (4 pts.) All 5×5 symmetric matrices A (meaning $A=A^{T}$).

Answer: Yes If A and B are symmetric matrices, so is $k A+l B$, for any $k, l \in \mathbb{R}$, since $(k A+l B)^{T}=k A^{T}+l B^{T}=k A+l B$.

Name: \qquad

2 (15 pts.)

A researcher measures the temperature at n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)$. The temperatures measured are $f_{1}, f_{2}, \ldots, f_{n}$ respectively. This researcher wants to find a best set of coefficients a, b, c, d, e, g to fit a function of the form

$$
f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+g
$$

to the data.
2. (a) (8 pts.) Set up an equation of the form $A x \approx b$ that represents this researcher's problem.
Answer: $\left(\begin{array}{cccccc}x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & x_{1} & y_{1} & 1 \\ x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & x_{2} & y_{2} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n}^{2} & x_{n} y_{n} & y_{n}^{2} & x_{n} & y_{n} & 1\end{array}\right)\left(\begin{array}{l}a \\ b \\ c \\ d \\ e \\ g\end{array}\right) \approx\left(\begin{array}{c}f_{1} \\ f_{2} \\ \vdots \\ f_{n}\end{array}\right)$.
2. (b) (4 pts.) Suppose the matrix A in the above can be written as $A=Q R$, where Q is tall-skinny orthogonal and R is invertible and upper triangular. What are the dimensions of Q ? and the dimensions of R ?

Answer: Q is a $n \times 6$ matrix and R is a 6×6 matrix.
2. (c) (3 pts.) Write the solution to the best set of coefficients in terms of possibly Q, Q^{T}, R, or R^{-1} and the given temperatures.

3 (15 pts.)

How many parameters are needed? We are looking for the minimum required to specify the object. Briefly explain.
3. (a) (5 pts.) The "one cold" vector has $(n-1)$ elements 1 and the remaining one 0 . How many parameters are needed to represent a "one cold" vector when n is not fixed in advance?

Answer: 2. One is for the size n of the vector and one is for the location of 0 .
3. (b) (5 pts.) How many parameters are required to represent a rank- 1 two by two matrix? (Possible hint: it may be easier to see the correct answer with the svd, though this problem can be done without the svd if you think carefully.)

Answer: 3. A two by two rank-1 matrix A has the SVD as

$$
A=\binom{\cos (\theta)}{\sin (\theta)}(a)\left(\begin{array}{ll}
\cos (\phi) & \sin (\phi)) .
\end{array}\right.
$$

So we need three parameters θ, a and ϕ.
3. (c) (5 pts.) An anti-symmetric matrix is one where $A^{T}=-A$. How many parameters are required to represent a 4×4 anti-symmetric matrix?

Answer: 6. A 4×4 anti-symmetric matrix is of the form

$$
\left(\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right)
$$

So six parameters are needed.

4 (10 pts.)

A square matrix A has first column and last column all ones. Why can't it have an inverse? Answer: Suppose A is an $n \times n$ matrix. Consider a matrix E which are 1 on the diagonal, is -1 as $(1, n)$-entry and is 0 otherwise. Note that E is an invertible matrix. If A is invertible, then $B=A E$ is invertible. However B has the last column as 0 and thus can not be invertible. Therefore A is not invertible.

5 (20 pts.)

The rank-r SVD of

$$
A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
3 & 8 & 2 \\
5 & 12 & 2
\end{array}\right)
$$

is numerically computed with Julia to be $A=U \Sigma V^{T}$, where

$$
\begin{gathered}
U=\left(\begin{array}{rr}
-0.203600 & -0.585801 \\
-0.543021 & -0.599144 \\
-0.814662 & 0.545769
\end{array}\right) \\
\Sigma=\left(\begin{array}{rr}
6.136942826453964 & \\
V=\left(\begin{array}{rr}
-0.365991 & 0.446524 \\
-0.912869 & -0.00172137 \\
-0.180887 & -0.89477
\end{array}\right)
\end{array}{ }^{2} \begin{array}{c}
\\
V
\end{array}\right)
\end{gathered}
$$

5. (a) (5 pts.) What is the rank of A ?

Answer: 2.

5. (b) (6 pts.) A linearly transforms the unit sphere $\{x:\|x\|=1\}$ into a filled ellipse in a plane, not an ellipsoid. What are the lengths of the semi-axes of this ellipse?
Answer: 6.136942826453964, 0.7740001393771697.
6. (c) (9 pts.) Circle the (chopped) numbers in U, Σ, V below that would figure in the best rank-1 approximation to A.

$$
U=\left(\begin{array}{rr}
-0.2036 & -0.5858 \\
-0.5430 & -0.5991 \\
-0.8147 & 0.5458
\end{array}\right) \quad \Sigma=\left(\begin{array}{rr}
6.1369 & \\
& 0.7740
\end{array}\right) \quad V=\left(\begin{array}{rr}
-0.3659 & 0.4465 \\
-0.9129 & -0.0017 \\
-0.1809 & -0.8948
\end{array}\right)
$$

Answer: The best rank 1 approximation is $u_{1} \sigma v_{1}^{T}$, where u_{1}, v_{1} are the first column of U
and V, and $\sigma=6.1369$.

6 (20 pts.)
The matrix $E=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1\end{array}\right)$ and the matrix $F=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 6 & 0 & 1\end{array}\right)$.
Ideally without working too hard, calculate $E^{-1} F^{-1}$.
Answer: $E=E_{4} E_{3} E_{2}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
$F=E_{6} E_{5}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 6 & 0 & 1\end{array}\right)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
So $E^{-1} F^{-1}=E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} E_{6}^{-1}$
$=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -4 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -5 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -6 & 0 & 1\end{array}\right)$
$=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & -5 & 1 & 0 \\ -4 & -6 & 0 & 1\end{array}\right)$.

Name:
Extra Page. Please write problem number and letter if needed.

Name:
Extra Page. Please write problem number and letter if needed.

Name:
Extra Page. Please write problem number and letter if needed.

Please do not write on this side of the page.

