MIT 18.06 Exam 1, Spring 2022
 Johnson

Your name:

Recitation:

problem	score
1	$/ 26$
2	$/ 24$
3	$/ 25$
4	$/ 25$
total	$/ 100$

Problem 0 (∞ points): Honor code

Copy the following statement with your signature into your solutions:
I have completed this exam closed-book/closed-notes entirely on my own.
[your signature]

Problem 1 (26 points):

Suppose

$$
A=\left(\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 2 & 5 \\
1 & 2 & 1 & 1
\end{array}\right)
$$

(a) Give a basis for $N(A)$.
(b) For what value or values (if any) of α does $A x=\left(\begin{array}{c}1 \\ 2 \alpha \\ \alpha\end{array}\right)$ have any solution x ?
(blank page for your work if you need it)

Problem 2 (24 points):

Give a basis for the nullspace $N(A)$ and a basis for the column space $C(A)$ for each of the following matrices:
(a) The one-column matrix $A=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$.
(b) The one-row matrix $A=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$.
(c) The 100-row matrix $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 2 & 3 & 4\end{array}\right)$ in which every row is $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$.
(blank page for your work if you need it)

Problem 3 (25 points):

Suppose that we are solving $A x=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. In each of the parts below, a complete solution x is proposed. For each possibility, say impossible if that could not be a complete solution to such an equation, or give the the size $m \times n$ and the rank of the matrix A if x is possible.
(a) $\vec{x}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$
(b) $\vec{x}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)+\alpha_{1}\left(\begin{array}{c}1 \\ -1 \\ 5 \\ 17\end{array}\right)+\alpha_{2}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$ for all real numbers $\alpha_{1}, \alpha_{2} \in \mathbb{R}$
(c) $\vec{x}=\binom{1}{2}+\alpha\binom{1}{2}$ for all real numbers $\alpha \in \mathbb{R}$
(d) $\vec{x}=\binom{1}{2}+\alpha\binom{1}{-1}$ for all real numbers $\alpha \in \mathbb{R}$
(e) $\vec{x}=\binom{1}{2}+\alpha_{1}\binom{1}{-1}+\alpha_{2}\binom{1}{-1}$ for all real numbers $\alpha_{1}, \alpha_{2} \in \mathbb{R}$

Problem 4 (25 points):

Let

$$
B=\left(\begin{array}{ccc}
1 & & \\
1 & 1 & \\
1 & 1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ccc}
2 & -1 & -1 \\
& 2 & -1 \\
& & 2
\end{array}\right), \quad b=\left(\begin{array}{c}
5 \\
-8 \\
-4
\end{array}\right) .
$$

Compute:

$$
(C B)^{-1} b .
$$

(Hint: Remember what I said in class about inverting matrices!)
(blank page for your work if you need it)

