MIT 18.06 Exam 2, Spring 2022 Johnson

Your name:

Recitation:

problem	score
1	/26
2	/24
3	/25
4	/25
total	/100

Problem 1 (26 points):

You are given 5 data points $(x_k, y_k, z_k) \in \{(1, 2, 7), (0, 0, 2), (-1, 0, 3), (1, 1, 4), (2, -1, 5)\}.$ You want to find the least-squaare fit of these points to a plane:

$$f(x,y) = \alpha x + \beta y + \gamma$$

for some scalar parameters (α, β, γ) . That is, you want to minimize $\sum_{k} [z_k - f(x_k, y_k)]^2$. Write a linear equation whose solution is the unknown parameters (α, β, γ) ,

of the form

(some matrix)
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
 = (some vector).

Give the matrix and the vector. You can leave your matrix and/or vector as a product of some other matrices—you don't need to multiply them out, and you don't need to solve the equation.

(blank page for your work if you need it)

Problem 2 (24 points):

Suppose that the columns of Q, given by

$$Q = \begin{pmatrix} q_1 & q_2 & q_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

are an orthonormal basis for C(A) for some $A = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}$.

(a) The vector
$$b = \begin{pmatrix} 5 \\ -6 \\ -6 \\ 1 \end{pmatrix}$$
 lies in $C(A)$. Write b in the basis of q_1, q_2, q_3 .

(b) What is the orthogonal projection of $y = \begin{pmatrix} 2 \\ -2 \\ 2 \\ -2 \end{pmatrix}$ onto $N(A^T)$?

(c) If Q was constructed by Gram–Schmidt applied to A, which of the following dot products *must* be zero? (Circle the zero terms.)

(blank page for your work if you need it)

Problem 3 (25 points):

Suppose

$$f(x) = (b - Ax)^T M(b - Ax)$$

for some $m \times n$ matrix A, an $m \times m$ matrix $M = M^T$ (symmetric), and vectors $b \in \mathbb{R}^m$ and $x \in \mathbb{R}^n$. Write a linear equation satisfied by x when $\nabla f = 0$ (i.e. at extrema of f).

Problem 4 (25 points):

Answer the following questions, which should require **little or no computation.**

- (a) If $A = \begin{pmatrix} a_1 & a_2 \end{pmatrix}$, the projection matrix onto C(A) is given by $\frac{a_1 a_1^T}{a_1^T a_1} + \frac{a_2 a_2^T}{a_2^T a_2}$ only when a_1 and a_2 are ______.
- (b) If S and T are orthogonal subspaces of a vector space V, then
 - (i) their intersection (vectors in both S and T) is the set _____
 - (ii) (dimension of S) + (dimension of T) must be (circle one):

= or \leq or \geq (dimension of V)

- (c) For the vector space \mathbb{R}^3 , give projection matrices onto:
 - (i) any 0-dimensional subspace
 - (ii) any 1-dimensional subspace
 - (iii) any 3-dimensional subspace
- (d) Give an example Q matrix with orthonormal columns such that either $Q^T Q$ or $Q Q^T$ (circle one) is not equal to I.
- (e) A is a 7×5 matrix of rank 4.
 - (i) Give the size $_ \times _$ and rank of the following projection matrices:

i. P_1 = projection onto C(A)

ii. P_2 = projection onto $C(A^T)$

- iii. $P_3 =$ projection onto N(A)
- iv. P_4 = projection onto $N(A^T)$
- (ii) Give a sum or product of two of these P matrices that must = 0 (a zero matrix).
- (iii) Give a sum or product of two of these P matrices that must = I (an identity matrix).

(blank page for your work if you need it)