MIT 18.06 Exam 2, Spring 2022
 Johnson

Your name:

Recitation:

problem	score
1	$/ 26$
2	$/ 24$
3	$/ 25$
4	$/ 25$
total	$/ 100$

Problem 1 (26 points):

You are given 5 data points $\left(x_{k}, y_{k}, z_{k}\right) \in\{(1,2,7),(0,0,2),(-1,0,3),(1,1,4),(2,-1,5)\}$. You want to find the least-squaare fit of these points to a plane:

$$
f(x, y)=\alpha x+\beta y+\gamma
$$

for some scalar parameters (α, β, γ). That is, you want to minimize $\sum_{k}\left[z_{k}-f\left(x_{k}, y_{k}\right)\right]^{2}$.
Write a linear equation whose solution is the unknown parameters (α, β, γ), of the form

$$
\text { (some matrix) }\left(\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right)=(\text { some vector })
$$

Give the matrix and the vector. You can leave your matrix and/or vector as a product of some other matrices-you don't need to multiply them out, and you don't need to solve the equation.
(blank page for your work if you need it)

Problem 2 (24 points):

Suppose that the columns of Q, given by

$$
Q=\left(\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

are an orthonormal basis for $C(A)$ for some $A=\left(\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right)$.
(a) The vector $b=\left(\begin{array}{c}5 \\ -6 \\ -6 \\ 1\end{array}\right)$ lies in $C(A)$. Write b in the basis of q_{1}, q_{2}, q_{3}.
(b) What is the orthogonal projection of $y=\left(\begin{array}{c}2 \\ -2 \\ 2 \\ -2\end{array}\right)$ onto $N\left(A^{T}\right)$?
(c) If Q was constructed by Gram-Schmidt applied to A, which of the following dot products must be zero? (Circle the zero terms.)

$$
\begin{array}{ccc}
q_{1}^{T} a_{1} & q_{1}^{T} a_{2} & q_{1}^{T} a_{3} \\
q_{2}^{T} a_{1} & q_{2}^{T} a_{2} & q_{2}^{T} a_{3} \\
q_{3}^{T} a_{1} & q_{3}^{T} a_{2} & q_{3}^{T} a_{3}
\end{array}
$$

(blank page for your work if you need it)

Problem 3 (25 points):

Suppose

$$
f(x)=(b-A x)^{T} M(b-A x)
$$

for some $m \times n$ matrix A, an $m \times m$ matrix $M=M^{T}$ (symmetric), and vectors $b \in \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$.

Write a linear equation satisfied by x when $\nabla f=0$ (i.e. at extrema of f).

Problem 4 (25 points):

Answer the following questions, which should require little or no computation.
(a) If $A=\left(\begin{array}{ll}a_{1} & a_{2}\end{array}\right)$, the projection matrix onto $C(A)$ is given by $\frac{a_{1} a_{1}^{T}}{a_{1}^{T} a_{1}}+\frac{a_{2} a_{2}^{T}}{a_{2}^{T} a_{2}}$ only when a_{1} and a_{2} are
(b) If S and T are orthogonal subspaces of a vector space V, then
(i) their intersection (vectors in both S and T) is the set \qquad
(ii) (dimension of $S)+($ dimension of $T)$ must be (circle one):

$$
=\text { or } \leq \text { or } \geq(\text { dimension of } V)
$$

(c) For the vector space \mathbb{R}^{3}, give projection matrices onto:
(i) any 0-dimensional subspace
(ii) any 1-dimensional subspace
(iii) any 3-dimensional subspace
(d) Give an example Q matrix with orthonormal columns such that either $Q^{T} Q$ or $Q Q^{T}$ (circle one) is not equal to I.
(e) A is a 7×5 matrix of rank 4 .
(i) Give the size ${ }_{-} \times$_ and rank of the following projection matrices:
i. $P_{1}=$ projection onto $C(A)$
ii. $P_{2}=$ projection onto $C\left(A^{T}\right)$
iii. $P_{3}=$ projection onto $N(A)$
iv. $P_{4}=$ projection onto $N\left(A^{T}\right)$
(ii) Give a sum or product of two of these P matrices that must $=0$ (a zero matrix).
(iii) Give a sum or product of two of these P matrices that must $=I$ (an identity matrix).
(blank page for your work if you need it)

