18.06 Exam 2 Solutions

Johnson, Spring 2022

1. To fit the given points $(x_k, y_k, z_k) \in \{(1, 2, 7), (0, 0, 2), (-1, 0, 3), (1, 1, 4), (2, -1, 5)\},$ we have

$$\begin{cases} \alpha x_1 + \beta y_1 + \gamma = z_1, \\ \alpha x_2 + \beta y_2 + \gamma = z_2, \\ \alpha x_3 + \beta y_3 + \gamma = z_3, \\ \alpha x_4 + \beta y_4 + \gamma = z_4, \\ \alpha x_5 + \beta y_5 + \gamma = z_5. \end{cases}$$

Writing the above as a matrix equation, we have

$$\begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \end{pmatrix}$$

In other words, we have

$$Ax = b$$

where

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 7 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

But of course, this is overdetermined (more equations than unknowns) and is unlikely to have an exact solution. Instead, the problem requests the least-square solution, corresponding to minimizing $||b - Ax||^2$, which yields the normal equations:

$$A^T A \hat{x} = A^T b$$

where $\hat{x} = (\hat{\alpha}, \hat{\beta}, \hat{\gamma})$ are the best-fit parameters. Writing this out explicitly by plugging in the numbers (which was *not* required) yields:

$\begin{pmatrix} 1 & 0 & -1 & 1 & 2 \\ 2 & 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix} $	$ \begin{pmatrix} \hat{\alpha} \\ \hat{\beta} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 & 1 & 2 \\ 2 & 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} $	$ \begin{pmatrix} 7\\2\\3\\4\\5 \end{pmatrix} $
---	---	---	---

2. (a) As $b \in C(A) = C(Q)$, we can write b as

$$b = QQ^{T}b = q_{1}(q_{1}^{T}b) + q_{2}(q_{2}^{T}b) + q_{3}(q_{3}^{T}b) = \boxed{3\sqrt{2}q_{1} - 4q_{2} + 8q_{3}}$$

recalling that the coefficients of an orthonormal basis are obtained merely by dot products (i.e. projections qq^{T}).

(b) Since $N(A^T) = C(A)^{\perp}$, we can get the orthogonal projection of $y = \begin{pmatrix} 2 \\ -2 \\ 2 \\ -2 \end{pmatrix}$

onto $N(A^T)$ by simply subtracting the projection of y onto the q's. In other words, the orthogonal projection of y onto $N(A^T)$ is

$$(I - QQ^{T})y = y - q_{1}(q_{1}^{T}y) - q_{2}(q_{2}^{T}y) - q_{3}(q_{3}^{T}y)$$
$$= \begin{pmatrix} 2\\-2\\2\\-2\\-2 \end{pmatrix} - 0 \begin{pmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{pmatrix} - 2 \begin{pmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\-\frac{1}{2} \end{pmatrix} - 2 \begin{pmatrix} \frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2} \end{pmatrix} = \begin{bmatrix} 0\\-2\\2\\0 \end{pmatrix}.$$

(c) The terms $\boxed{q_2^T a_1, q_3^T a_1, q_3^T a_2}$ must be 0.

In general, for $A = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}$ with linearly independent columns, the QR factorization obtained using Gram-Schmidt is

$$A = QR,$$

where $Q = \begin{pmatrix} q_1 & q_2 & \dots & q_n \end{pmatrix}$ is a $m \times n$ matrix with orthonormal columns spanning C(A) and $R = \begin{pmatrix} r_{11} & r_{21} & \dots & r_{n1} \\ 0 & r_{22} & \dots & r_{n2} \\ & & \vdots \\ 0 & 0 & \dots & r_{nn} \end{pmatrix}$ is an $n \times n$ invertible upper-triangular matrix, with $r_{ii} = a_i^T a_i$ for all i > i

matrix, with $r_{ij} = q_i^T a_j$ for all $i \ge j$.

Another way of seeing the same thing is to recall the Gram–Schmidt process. By construction, q_1 is parallel to a_1 , so q_2 and q_3 must be $\perp a_1$. a_2 is in the span of q_1 and q_2 , so we must also have $q_3 \perp a_2$. 3. For $f(x) = (b - Ax)^T M(b - Ax)$, recall from class that $d(y^T My) = dy^T My + y^T M dy = 2 dy^T M y$ (using $M = M^T$). For y = b - Ax, we have dy = -A dx. Combining these equations yields:

$$df = 2dy^T My = 2(-Adx)^T M(b - Ax) = dx^T \underbrace{\left[-2A^T M A(b - Ax)\right]}_{\nabla f},$$

since the gradient is defined by $df = \nabla f^T dx = dx^T \nabla f$. Alternatively, going through all of the steps explicitly using the product rule, we have

$$\begin{split} df &= d((b - Ax)^T M(b - Ax)) \\ &= (d(b - Ax)^T) M(b - Ax) + (b - Ax)^T (dM)(b - Ax) + (b - Ax)^T M(d(b - Ax))) \\ &= -(Adx)^T M(b - Ax) + 0 - (b - Ax)^T MAdx \quad (\text{since } dA, db, dM \text{ all vanish}) \\ &= -(M(b - Ax))^T (Adx) - (b - Ax)^T MAdx \quad (\text{since } x^T y = y^T x \text{ for column vectors } x, y) \\ &= -((b - Ax)^T M^T A + (b - Ax)^T MA) dx \\ &= -2(b - Ax)^T M^T A dx \quad (\text{since } M^T = M) \\ &= \underbrace{(-2A^T M(b - Ax))}_{\nabla f}^T dx. \end{split}$$

Therefore, when $\nabla f = 0$, we have

$$-2A^{T}M(b - Ax) = 0 \iff \boxed{A^{T}MAx = A^{T}Mb}$$

4. (a) If $A = \begin{pmatrix} a_1 & a_2 \end{pmatrix}$, the projection matrix onto C(A) is given by $\frac{a_1 a_1^T}{a_1^T a_1} + \frac{a_2 a_2^T}{a_2^T a_2}$ only when a_1, a_2 are orthogonal $(\neq \text{ orthonormal})$. In general, we have $P = A(A^T A)^{-1}A^T = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} a_1^T a_1 & a_1^T a_2 \\ a_2^T a_1 & a_2^T a_2 \end{pmatrix}^{-1} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$,

which would have terms involving both a_1 and a_2 if they are not orthogonal

- (b) If S and T are orthogonal subspaces of a vector space V, then
 - (i) their intersection (vectors in both S and T) is the set $\lfloor \{\vec{0}\} \rfloor$ Note that if $x \in S \cap T$ then $x^T x = 0 \Rightarrow x = 0$.
 - (ii) (dimension of S) + (dimension of T) must be \leq (dimension of V).

(The sum = dimension V only when S and T are orthogonal complements, not merely orthogonal.) For example, $S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$ and $T = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ are two orthogonal subspaces of $V = \mathbb{R}^3$, and we have

(dimension of S) + (dimension of T) = 1 + 1 = 2 \leq 3.

- (c) For the vector space \mathbb{R}^3 , give projection matrices onto:
 - (i) any 0-dimensional subspace: $P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, i.e. the 3 × 3 zero matrix.

(Note that the only 0-dimensional subspace is $\{\vec{0}\}$.)

(ii) any 1-dimensional subspace: $\begin{vmatrix} P = \frac{aa^T}{a^Ta} \end{vmatrix} \text{ for } S = \text{span}\{a\} \text{ with some } a \neq \vec{0}.$ A specific example is $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ for } S = \text{span}\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}.$ (iii) any 3-dimensional subspace: $P = I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ i.e. the } 3 \times 3 \text{ identity}$

matrix. Note that the only subprace of \mathbb{R}^3 with dimension 3 is \mathbb{R}^3 itself.

(d) We must have $Q^T Q = I$ for orthonormal columns, but $QQ^T \neq I$ is possible whenever Q is not square (not unitary), in which case QQ^T is the projection matrix onto a lower-dimensional subspace C(Q) of the whole space. In particular, you just need any "tall" Q matrix: orthonormal columns, but fewer columns than rows, such as the Q matrix of problem 2.

The simplest example is a Q matrix with only a *single* orthonormal column, in which QQ^T is projection onto a 1d subspace, such as:

$$Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad QQ^T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq I$$

- (e) A is a 7×5 matrix of rank 4.
 - (i) Give the size and rank of the following projection matrices:
 - i. P_1 = projection onto C(A): size = 7 × 7, rank = 4 ii. P_2 = projection onto $C(A^T)$: size = 5 × 5, rank = 4 iii. P_3 = projection onto N(A): size = 5 × 5, rank = 5 - 4 = 1
 - iv. $P_4 = \text{projection onto } N(A^T)$: size = 7 × 7, rank = 7 4 = 3
 - (ii) Give a sum or product of two of these P matrices that must = 0 (a zero matrix): Note that $P_1P_4 = 0$ as C(A) and $N(A^T)$ are orthogonal complements. Similarly, we have $P_4P_1 = 0$, $P_2P_3 = 0$, $P_3P_2 = 0$.
 - (iii) Give a sum or product of two of these P matrices that must = I (an identity matrix): As C(A) and $N(A^T)$ are orthogonal complements, we have $P_4 = I P_1$. Therefore, $P_1 + P_4 = I$. Similarly, $P_2 + P_3 = I$.