18.06 Exam 2 Solutions

Johnson, Spring 2022

1. To fit the given points $\left(x_{k}, y_{k}, z_{k}\right) \in\{(1,2,7),(0,0,2),(-1,0,3),(1,1,4),(2,-1,5)\}$, we have

$$
\left\{\begin{array}{l}
\alpha x_{1}+\beta y_{1}+\gamma=z_{1}, \\
\alpha x_{2}+\beta y_{2}+\gamma=z_{2}, \\
\alpha x_{3}+\beta y_{3}+\gamma=z_{3}, \\
\alpha x_{4}+\beta y_{4}+\gamma=z_{4}, \\
\alpha x_{5}+\beta y_{5}+\gamma=z_{5} .
\end{array}\right.
$$

Writing the above as a matrix equation, we have

$$
\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1 \\
x_{4} & y_{4} & 1 \\
x_{5} & y_{5} & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5}
\end{array}\right) .
$$

In other words, we have

$$
A x=b
$$

where

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1 \\
2 & -1 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
7 \\
2 \\
3 \\
4 \\
5
\end{array}\right) .
$$

But of course, this is overdetermined (more equations than unknowns) and is unlikely to have an exact solution. Instead, the problem requests the least-square solution, corresponding to minimizing $\|b-A x\|^{2}$, which yields the normal equations:

$$
A^{T} A \hat{x}=A^{T} b \text {, }
$$

where $\hat{x}=(\hat{\alpha}, \hat{\beta}, \hat{\gamma})$ are the best-fit parameters. Writing this out explicitly by plugging in the numbers (which was not required) yields:

$$
\left(\begin{array}{ccccc}
1 & 0 & -1 & 1 & 2 \\
2 & 0 & 0 & 1 & -1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{\alpha} \\
\hat{\beta} \\
\hat{\gamma}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & -1 & 1 & 2 \\
2 & 0 & 0 & 1 & -1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
7 \\
2 \\
3 \\
4 \\
5
\end{array}\right)
$$

2. (a) As $b \in C(A)=C(Q)$, we can write b as

$$
b=Q Q^{T} b=q_{1}\left(q_{1}^{T} b\right)+q_{2}\left(q_{2}^{T} b\right)+q_{3}\left(q_{3}^{T} b\right)=3 \sqrt{2} q_{1}-4 q_{2}+8 q_{3},
$$

recalling that the coefficients of an orthonormal basis are obtained merely by dot products (i.e. projections $q q^{T}$).
(b) Since $N\left(A^{T}\right)=C(A)^{\perp}$, we can get the orthogonal projection of $y=\left(\begin{array}{c}2 \\ -2 \\ 2 \\ -2\end{array}\right)$ onto $N\left(A^{T}\right)$ by simply subtracting the projection of y onto the q 's. In other words, the orthogonal projection of y onto $N\left(A^{T}\right)$ is

$$
\begin{aligned}
\left(I-Q Q^{T}\right) y & =y-q_{1}\left(q_{1}^{T} y\right)-q_{2}\left(q_{2}^{T} y\right)-q_{3}\left(q_{3}^{T} y\right) \\
& =\left(\begin{array}{c}
2 \\
-2 \\
2 \\
-2
\end{array}\right)-0\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)-2\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)-2\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2 \\
2 \\
0
\end{array}\right) .
\end{aligned}
$$

(c) The terms $q_{2}^{T} a_{1}, q_{3}^{T} a_{1}, q_{3}^{T} a_{2}$ must be 0 .

In general, for $A=\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right)$ with linearly independent columns, the QR factorization obtained using Gram-Schmidt is

$$
A=Q R
$$

where $Q=\left(\begin{array}{llll}l_{1} & q_{2} & \ldots & q_{n}\end{array}\right)$ is a $m \times n$ matrix with orthonormal columns span$\operatorname{ning} C(A)$ and $R=\left(\begin{array}{cccc}r_{11} & r_{21} & \ldots & r_{n 1} \\ 0 & r_{22} & \ldots & r_{n 2} \\ & & \vdots & \\ 0 & 0 & \ldots & r_{n n}\end{array}\right)$ is an $n \times n$ invertible upper-triangular matrix, with $r_{i j}=q_{i}^{T} a_{j}$ for all $i \geq j$.

Another way of seeing the same thing is to recall the Gram-Schmidt process. By construction, q_{1} is parallel to a_{1}, so q_{2} and q_{3} must be $\perp a_{1}$. a_{2} is in the span of q_{1} and q_{2}, so we must also have $q_{3} \perp a_{2}$.
3. For $f(x)=(b-A x)^{T} M(b-A x)$, recall from class that $d\left(y^{T} M y\right)=d y^{T} M y+$ $y^{T} M d y=2 d y^{T} M y$ (using $M=M^{T}$). For $y=b-A x$, we have $d y=-A d x$. Combining these equations yields:

$$
d f=2 d y^{T} M y=2(-A d x)^{T} M(b-A x)=d x^{T} \underbrace{\left[-2 A^{T} M A(b-A x)\right]}_{\nabla f},
$$

since the gradient is defined by $d f=\nabla f^{T} d x=d x^{T} \nabla f$. Alternatively, going through all of the steps explicitly using the product rule, we have

$$
\begin{aligned}
d f & =d\left((b-A x)^{T} M(b-A x)\right) \\
& =\left(d(b-A x)^{T}\right) M(b-A x)+(b-A x)^{T}(d M)(b-A x)+(b-A x)^{T} M(d(b-A x)) \\
& =-(A d x)^{T} M(b-A x)+0-(b-A x)^{T} M A d x \quad \quad \quad \text { since } d A, d b, d M \text { all vanish) } \\
& \left.=-(M(b-A x))^{T}(A d x)-(b-A x)^{T} M A d x \quad \text { (since } x^{T} y=y^{T} x \text { for column vectors } x, y\right) \\
& =-\left((b-A x)^{T} M^{T} A+(b-A x)^{T} M A\right) d x \\
& \left.=-2(b-A x)^{T} M^{T} A d x \quad \quad \text { since } M^{T}=M\right) \\
& =\underbrace{\left(-2 A^{T} M(b-A x)\right)^{T}}_{\nabla f} d x .
\end{aligned}
$$

Therefore, when $\nabla f=0$, we have

$$
-2 A^{T} M(b-A x)=0 \Longleftrightarrow A^{T} M A x=A^{T} M b .
$$

4. (a) If $A=\left(\begin{array}{ll}a_{1} & a_{2}\end{array}\right)$, the projection matrix onto $C(A)$ is given by $\frac{a_{1} a_{1}^{T}}{a_{1}^{T} a_{1}}+\frac{a_{2} a_{2}^{T}}{a_{2}^{T} a_{2}}$ only when a_{1}, a_{2} are orthogonal (\neq orthonormal).
In general, we have $P=A\left(A^{T} A\right)^{-1} A^{T}=\left(\begin{array}{ll}a_{1} & a_{2}\end{array}\right)\left(\begin{array}{ll}a_{1}^{T} a_{1} & a_{1}^{T} a_{2} \\ a_{2}^{T} a_{1} & a_{2}^{T} a_{2}\end{array}\right)^{-1}\binom{a_{1}}{a_{2}}$, which would have terms involving both a_{1} and a_{2} if they are not orthogonal.
(b) If S and T are orthogonal subspaces of a vector space V, then
(i) their intersection (vectors in both S and T) is the set $\{\overrightarrow{0}\}$.

Note that if $x \in S \cap T$ then $x^{T} x=0 \Rightarrow x=0$.
(ii) (dimension of $S)+($ dimension of $T)$ must be \leq (dimension of V).
(The sum $=$ dimension V only when S and T are orthogonal complements, not merely orthogonal.) For example, $S=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$ and $T=\operatorname{span}\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$ are two orthogonal subspaces of $V=\mathbb{R}^{3}$, and we have $($ dimension of $S)+($ dimension of $T)=1+1=2 \leq 3$.
(c) For the vector space \mathbb{R}^{3}, give projection matrices onto:
(i) any 0-dimensional subspace: $P=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, i.e. the 3×3 zero matrix.
(Note that the only 0 -dimensional subspace is $\{\overrightarrow{0}\}$.)
(ii) any 1-dimensional subspace: $P=\frac{a a^{T}}{a^{T} a}$ for $S=\operatorname{span}\{a\}$ with some $a \neq \overrightarrow{0}$.

A specific example is $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ for $S=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$.
any 3-dimensional subspace: $P=I_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, i.e. the 3×3 identity matrix. Note that the only subpsace of \mathbb{R}^{3} with dimension 3 is \mathbb{R}^{3} itself.
(d) We must have $Q^{T} Q=I$ for orthonormal columns, but $Q Q^{T} \neq I$ is possible whenever Q is not square (not unitary), in which case $Q Q^{T}$ is the projection matrix onto a lower-dimensional subspace $C(Q)$ of the whole space. In particular, you just need any "tall" Q matrix: orthonormal columns, but fewer columns than rows, such as the Q matrix of problem 2 .

The simplest example is a Q matrix with only a single orthonormal column, in which $Q Q^{T}$ is projection onto a 1d subspace, such as:

$$
Q=\binom{1}{0}, \quad Q Q^{T}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \neq I
$$

(e) A is a 7×5 matrix of rank 4 .
(i) Give the size and rank of the following projection matrices:
i. $P_{1}=$ projection onto $C(A):$ size $=7 \times 7$, rank $=4$
ii. $P_{2}=$ projection onto $C\left(A^{T}\right):$ size $=5 \times 5$, rank $=4$
iii. $P_{3}=$ projection onto $N(A):$ size $=5 \times 5$, rank $=5-4=1$
iv. $P_{4}=$ projection onto $N\left(A^{T}\right)$: size $=7 \times 7$, rank $=7-4=3$
(ii) Give a sum or product of two of these P matrices that must $=0$ (a zero matrix): Note that $P_{1} P_{4}=0$ as $C(A)$ and $N\left(A^{T}\right)$ are orthogonal complements. Similarly, we have $P_{4} P_{1}=0, P_{2} P_{3}=0, P_{3} P_{2}=0$.
(iii) Give a sum or product of two of these P matrices that must $=I$ (an identity matrix): As $C(A)$ and $N\left(A^{T}\right)$ are orthogonal complements, we have $P_{4}=I-P_{1}$. Therefore, $P_{1}+P_{4}=I$. Similarly, $P_{2}+P_{3}=I$.

