MIT 18.06 Exam 3, Spring 2022
 Johnson

Your name:

Recitation:

problem	score
1	$/ 30$
2	$/ 21$
3	$/ 24$
4	$/ 25$
total	$/ 100$

Problem 0 (∞ points): Honor code

Copy the following statement with your signature into your solutions:
I have completed this exam closed-book/closed-notes entirely on my own.
[your signature]

Problem 1 (30 points):

The matrix

$$
A=\left(\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right)
$$

has an eigenvalue $\lambda_{1}=1$ and corresponding eigenvector $x_{1}=\binom{1}{-2}$.
(a) What is the other eigenvalue λ_{2} and a corresponding eigenvector $x_{2}=$ $\binom{1}{? ?}$?
(b) B is a 2×2 matrix such that $B x_{k}=\left(1-\lambda_{k}+\lambda_{k}^{2}\right) x_{k}$ for the two eigenvectors ($k=1,2$). What is B ?
(c) What is $A^{3 / 2}\binom{1}{-1}$?
(blank page for your work if you need it)

Problem 2 (21 points):

A is a square matrix such that $N(A-I)$ is spanned by $\binom{1}{2}$ and $N(A-5 I)$ is spanned by $\binom{1}{-2}$.
(a) Without much calculation, you can tell that A is $/$ is not (choose 1) Hermitian because \qquad .
(b) What is A ? You can leave your answer as a product of matrices and/or matrix inverses without multiplying/inverting them.
(c) What is e^{A+I} ? You can leave your answer as a product of matrices and/or matrix inverses without multiplying/inverting them, but your answer should not have exponentials of matrices or infinite series.
(blank page for your work if you need it)

Problem 3 (24 points):

For each of the following, say whether it must be true, it may be true, or it cannot be true. No justification needed.
(a) If a matrix is diagonalizable, it must/may/cannot have orthogonal eigenvectors.
(b) M is a Markov matrix. If $M^{n} x$ converges to a steady state as $n \rightarrow \infty$ for any vector x, then M must/may/cannot be a positive Markov matrix (i.e. have all entries >0).
(c) If a matrix A is not diagonalizable, then $\operatorname{det}(A-\lambda I)$ must/may/cannot have repeated roots.
(d) If $A^{n} x$ goes to zero as $n \rightarrow \infty$ for some x, then A must/may/cannot have an eigenvalue λ with $|\lambda|>1$
(e) If $e^{A t} x$ goes to zero as $t \rightarrow \infty$ for every x, then A must/may/cannot have an eigenvalue λ with $|\lambda|>1$
(f) If A has an eigenvector $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, then it must/may/cannot have an eigenvector $\left(\begin{array}{l}-3 \\ -6 \\ -9\end{array}\right)$.

Problem 4 (25 points):

Suppose A is a real-symmetric matrix with eigenvalues $\lambda_{1}=1, \lambda_{2}=3, \lambda_{3}=0$, and $\lambda_{4}=7$, with corresponding eigenvectors:

$$
x_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), x_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), x_{3}=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right), x_{4}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

Now, we construct a sequence of vectors $y_{0}, y_{1}, y_{2}, \ldots$ where each vector y_{k+1} in the sequence is computed from the previous vector y_{k} by solving

$$
(A-2 I) y_{k+1}=y_{k}
$$

for y_{k+1}. If $y_{0}=\left(\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right)$, give a good approximation for y_{100}.
(blank page for your work if you need it)

