MIT 18.06 Exam 3, Spring 2022 Johnson

Your name:

Recitation:

problem	score
1	/30
2	/21
3	/24
4	/25
total	/100

Problem 0 (∞ points): Honor code

Copy the following statement with your signature into your solutions:

I have completed this exam closed-book/closed-notes entirely on my own.

[your signature]

Problem 1 (30 points):

The matrix

$$A = \left(\begin{array}{cc} 3 & 1\\ 2 & 2 \end{array}\right)$$

has an eigenvalue $\lambda_1 = 1$ and corresponding eigenvector $x_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

- (a) What is the other eigenvalue λ_2 and a corresponding eigenvector $x_2 = \begin{pmatrix} 1 \\ ?? \end{pmatrix}$?
- (b) B is a 2×2 matrix such that $Bx_k = (1 \lambda_k + \lambda_k^2)x_k$ for the two eigenvectors (k = 1, 2). What is B?
- (c) What is $A^{3/2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$?

(blank page for your work if you need it)

Problem 2 (21 points):

A is a square matrix such that N(A-I) is spanned by $\begin{pmatrix} 1\\2 \end{pmatrix}$ and N(A-5I) is spanned by $\begin{pmatrix} 1\\-2 \end{pmatrix}$.

- (a) Without much calculation, you can tell that A is / is not (choose 1) Hermitian because _____.
- (b) What is A? You can leave your answer as a **product of matrices and/or matrix inverses** without multiplying/inverting them.
- (c) What is e^{A+I} ? You can leave your answer as a **product of matrices** and/or matrix inverses without multiplying/inverting them, but your answer should not have exponentials of matrices or infinite series.

(blank page for your work if you need it)

Problem 3 (24 points):

For each of the following, say whether it **must** be true, it **may** be true, or it **cannot** be true. No justification needed.

- (a) If a matrix is diagonalizable, it **must/may/cannot** have orthogonal eigenvectors.
- (b) M is a Markov matrix. If $M^n x$ converges to a steady state as $n \to \infty$ for any vector x, then M must/may/cannot be a positive Markov matrix (i.e. have all entries > 0).
- (c) If a matrix A is not diagonalizable, then $det(A \lambda I)$ must/may/cannot have repeated roots.
- (d) If $A^n x$ goes to zero as $n \to \infty$ for some x, then A must/may/cannot have an eigenvalue λ with $|\lambda| > 1$
- (e) If $e^{At}x$ goes to zero as $t \to \infty$ for every x, then A **must/may/cannot** have an eigenvalue λ with $|\lambda| > 1$

(f) If A has an eigenvector
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
, then it **must/may/cannot** have an eigenvector $\begin{pmatrix} -3\\-6\\-9 \end{pmatrix}$.

Problem 4 (25 points):

Suppose A is a real-symmetric matrix with eigenvalues $\lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = 0$, and $\lambda_4 = 7$, with corresponding eigenvectors:

$$x_{1} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, x_{2} = \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, x_{3} = \begin{pmatrix} 1\\1\\-1\\-1 \\-1 \end{pmatrix}, x_{4} = \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}.$$

Now, we construct a sequence of vectors y_0, y_1, y_2, \ldots where each vector y_{k+1} in the sequence is computed from the previous vector y_k by solving

$$(A-2I)y_{k+1} = y_k$$

for y_{k+1} . If $y_0 = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, give a good approximation for y_{100} .

(blank page for your work if you need it)