MIT 18.06 Exam 3 **Solutions**, Spring 2022 Johnson

Problem 1 (10+10+10 points):

The matrix

$$A = \left(\begin{array}{cc} 3 & 1 \\ 2 & 2 \end{array}\right)$$

has an eigenvalue $\lambda_1 = 1$ and corresponding eigenvector $x_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

- (a) What is the other eigenvalue λ_2 and a corresponding eigenvector $x_2 = \begin{pmatrix} 1 \\ ?? \end{pmatrix}$?
- (b) *B* is a 2×2 matrix such that $Bx_k = (1-\lambda_k + \lambda_k^2)x_k$ for the two eigenvectors (k = 1, 2). What is *B*?

(c) What is
$$A^{3/2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
?

Solution:

(a) trace(A) = $3+2=5=\lambda_1+\lambda_2$, so the other eigenvalue is $\lambda_2=5-\lambda_1=4$. To find a corresponding eigenvector, we need to solve

$$(A - 4I)x_2 = \begin{pmatrix} -1 & 1\\ 2 & -2 \end{pmatrix} x_2 = 0$$

By insspection, the second column is minus the first, so a solution is $x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ or any multiple thereof (but you were requested to scale x_2 so that the first component = 1).

(b) $Bx_k = (1 - \lambda_k + \lambda_k^2)x_k$ is an eigen-equation: *B* has the same eigenvectors as *A* but with the eigenvalues replaced by $1 - \lambda_k + \lambda_k^2$. That means that

$$B = I - A + A^{2} = \begin{pmatrix} 1 \\ & 1 \end{pmatrix} - \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} + \underbrace{\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}}_{\begin{pmatrix} 11 & 5 \\ 10 & 6 \end{pmatrix}} = \underbrace{\begin{pmatrix} 9 & 4 \\ 8 & 5 \end{pmatrix}}_{\begin{pmatrix} 11 & 5 \\ 10 & 6 \end{pmatrix}}$$

You could have also solved this by diagonalization: $B = X \begin{pmatrix} 1 - \lambda_2 + \lambda_2^2 \\ 1 - \lambda_2 + \lambda_2^2 \end{pmatrix} X^{-1}$

where $X = \begin{pmatrix} x_1 & x_2 \end{pmatrix}$ is the matrix of eigenvectors, but this may be more work since you have to compute X^{-1} , unless you happen to remember the formula for the inverse of a 2×2 matrix.

(c) The key trick, as usual, is that $A^{3/2}$ multiplies an *eigenvector* (where A acts like a scalar) by $\lambda^{3/2}$. So, to apply $A^{3/2}$ to an arbitrary vector, we just expand that vector in the basis of the eigenvectors and then multiply each term by $\lambda^{3/2}$. Here,

$$\begin{pmatrix} 1\\ -1 \end{pmatrix} = c_1 \underbrace{\begin{pmatrix} 1\\ -2 \end{pmatrix}}_{x_1} + c_2 \underbrace{\begin{pmatrix} 1\\ 1 \end{pmatrix}}_{x_2} = \underbrace{\begin{pmatrix} 1& 1\\ -2 & 1 \end{pmatrix}}_X \begin{pmatrix} c_1\\ c_2 \end{pmatrix}.$$

Proceeding by Gaussian elimination, we add twice the first row to the second row to obtain:

$$\underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}}_{U} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \implies c_2 = 1/3, \ c_1 = 1 - 1/3 = 2/3.$$

(Yes, the answer requires the dread "fractions." Sorry!) Hence

$$A^{3/2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{2}{3} \lambda_1^{3/2} x_1 + \frac{1}{3} \lambda_2^{3/2} x_2 = \frac{2}{3} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \frac{8}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \boxed{\begin{pmatrix} 10/3 \\ 4/3 \end{pmatrix}}$$

Problem 2 (7+7+7 points):

A is a square matrix such that N(A-I) is spanned by $\begin{pmatrix} 1\\2 \end{pmatrix}$ and N(A-5I) is spanned by $\begin{pmatrix} 1\\-2 \end{pmatrix}$

- (a) Without much calculation, you can tell that A is / is not (choose 1) Hermitian because _____.
- (b) What is A? You can leave your answer as a **product of matrices and/or matrix inverses** without multiplying/inverting them.
- (c) What is e^{A+I} ? You can leave your answer as a **product of matrices** and/or matrix inverses without multiplying/inverting them, but your answer should not have exponentials of matrices or infinite series.

Solution:

- (a) The two nullspace vectors are eigenvectors of A with $\lambda = 1$ and 5, respectively, but they are clearly **not orthogonal**, so A is **not** Hermitian.
- (b) From the dimensions of the vectors, A must be a 2×2 matrix, and we are given two eigenvectors for two eigenvectors. Hence, it is diagonalizable and

$$A = X\Lambda X^{-1} = \left[\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}^{-1} \right].$$

You weren't required to simplify it further, but it turns out that $A = \begin{pmatrix} 3 & -1 \\ -4 & 3 \end{pmatrix}$ if you work it all out.

(c) e^{A+I} has the same eigenvectors as A, with the eigenvalues replaced by $\lambda \to e^{\lambda+1}$. So, we can again use the diagonalization

$$e^{A+I} = \boxed{\left(\begin{array}{cc} 1 & 1 \\ 2 & -2 \end{array}\right) \left(\begin{array}{c} e^2 \\ e^6 \end{array}\right) \left(\begin{array}{c} 1 & 1 \\ 2 & -2 \end{array}\right)^{-1}}.$$

Problem 3 (4+4+4+4+4+4 points):

For each of the following, say whether it **must** be true, it **may** be true, or it **cannot** be true. No justification needed.

- (a) If a matrix is diagonalizable, it **must/may/cannot** have orthogonal eigenvectors.
- (b) M is a Markov matrix. If Mⁿx converges to a steady state as n → ∞ for any vector x, the M must/may/cannot be a positive Markov matrix (i.e. have all entries > 0).
- (c) If a matrix A is not diagonalizable, then $det(A \lambda I)$ must/may/cannot have repeated roots.
- (d) If $A^n x$ goes to zero as $n \to \infty$ for some x, then A **must/may/cannot** have an eigenvalue λ with $|\lambda| > 1$
- (e) If $e^{At}x$ goes to zero as $t \to \infty$ for every x, then A **must/may/cannot** have an eigenvalue λ with $|\lambda| > 1$

(f) If A has an eigenvector
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
, then it **must/may/cannot** have an eigenvector $\begin{pmatrix} -3\\-6\\-9 \end{pmatrix}$.

Solution:

- (a) **May**. (All "normal" matrices $AA^H = AA^H$, such as Hermitian matrices, are diagonalizable with orthogonal eigenvectors, but the converse is not true: not all diagonalizable matrices are normal. On the other hand, all diagonalizable matrices are *similar* to normal matrices, so there is *some* change of basis in which their eigenvectors are orthogonal.)
- (b) May. (All positive Markov matrices must yield a steady state—they have a single λ = 1 eigenvalue and all others have |λ| < 1, but the converse is not true: a Markov matrix with zero entries may still have a single |λ| = 1 eigenvalue. On the other hand, although any Markov matrix must have a λ = 1 eigenvalue, it may also have other eigenvalues like λ = -1 that can cause Mⁿx to oscillate forever without converging.)
- (c) **Must**. Non-diagonalizable (defective) matrices can only arise when the characteristic polynomial has repeated roots. (The converse is not true, however: a matrix with repeated eigenvalues *may* still be diagonalizable.)
- (d) **May**. Even if there is some $|\lambda_k| > 1$, you can still get decaying $A^n x$ if x is chosen to be an eigenvector x_j of a different eigenvalue with $|\lambda_j| < 1$, or to be a linear combination of such eigenvectors.

- (e) **May**. For $e^{At}x$ to decay, all of its eigenvalues must have *negative real* parts. This is unrelated to the magnitude $|\lambda|$. For example, it could have an eigenvalue $\lambda = -2$.
- (f) Must. $\begin{pmatrix} -3 \\ -6 \\ -9 \end{pmatrix} = -3 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, and all nonzero multiples of an eigenvector are also eigenvectors (of the same eigenvalue).

Problem 4 (25 points):

Suppose A is a real-symmetric matrix with eigenvalues $\lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = 0$, and $\lambda_4 = 7$, with corresponding eigenvectors:

$$x_{1} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, x_{2} = \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, x_{3} = \begin{pmatrix} 1\\1\\-1\\-1 \\-1 \end{pmatrix}, x_{4} = \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}.$$

Now, we construct a sequence of vectors y_0, y_1, y_2, \ldots where each vector y_{k+1} in the sequence is computed from the previous vector y_k by solving

$$(A-2I)y_{k+1} = y_k$$

for y_{k+1} . If $y_0 = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, give a good approximation for y_{100} .

Solution:

Rearranging, we have $y_{k+1} = (A - 2I)^{-1}y_k$, so

$$y_k = (A - 2I)^{-k} y_0.$$

For k = 100, this will be dominated by the largest $|\lambda|$ eigenvalues of $(A - 2I)^{-1}$, but this matrix has the **same eigenvectors** as A with its eigenvalues λ replaced by $\frac{1}{\lambda-2}$. So, the eigenvalues of $(A - 2I)^{-1}$ are

$$\frac{1}{\lambda_1 - 2} = -1, \ \frac{1}{\lambda_2 - 2} = 1, \ \frac{1}{\lambda_3 - 2} = -\frac{1}{2}, \ \text{and} \ \frac{1}{\lambda_4 - 2} = \frac{1}{5}$$

Of these, the largest magnitudes are -1 and +1, which both have magnitude 1, so y_{100} will be dominated by the x_1 and x_2 terms in the expansion of y_0 . More explicitly, if we expand y_0 in the basis of eigenvectors:

$$y_0 = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 \,,$$

then

$$y_{100} = (A - 2I)^{-100} y_0 = (-1)^{100} c_1 x_1 + 1^{100} c_2 x_2 + \left(-\frac{1}{2}\right)^{100} c_3 x_3 + \left(\frac{1}{5}\right)^{100} c_4 x_4 \approx c_1 x_1 + c_2 x_2$$

To compute this explicitly, we merely need to compute c_1 and c_2 . But A is Hermitian and hence the eigenvectors must be (and are) **orthogonal**, so we just need **orthogonal projection** to compute the coefficients of the basis expansion:

$$c_{1} = \frac{x_{1}^{T}}{x_{1}^{T}x_{1}}y_{0} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} = \frac{5}{2},$$

$$c_{2} = \frac{x_{2}^{T}}{x_{2}^{T}x_{2}}y_{0} = \frac{1}{4} \begin{pmatrix} 1 & -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} = \frac{1}{2}.$$

Therefore,

$$y_{100} \approx \frac{5}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 3\\2\\3\\2 \end{bmatrix}.$$

_

Note that the next biggest term is on the order of $\frac{1}{2^{100}} \approx 7.9 \times 10^{-31}$, so this approximation is pretty darn good! Actually, the $c_3 = 1$ term is the only correction, since $c_4 = 0$ ($x_4^T y_0 = 0$).