MIT 18.06 Exam 3 Solutions, Spring 2022
 Johnson

Problem 1 ($10+10+10$ points):

The matrix

$$
A=\left(\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right)
$$

has an eigenvalue $\lambda_{1}=1$ and corresponding eigenvector $x_{1}=\binom{1}{-2}$.
(a) What is the other eigenvalue λ_{2} and a corresponding eigenvector $x_{2}=$ $\binom{1}{? ?} ?$
(b) B is a 2×2 matrix such that $B x_{k}=\left(1-\lambda_{k}+\lambda_{k}^{2}\right) x_{k}$ for the two eigenvectors ($k=1,2$). What is B ?
(c) What is $A^{3 / 2}\binom{1}{-1}$?

Solution:

(a) $\operatorname{trace}(A)=3+2=5=\lambda_{1}+\lambda_{2}$, so the other eigenvalue is $\lambda_{2}=5-\lambda_{1}=4$. To find a corresponding eigenvector, we need to solve

$$
(A-4 I) x_{2}=\left(\begin{array}{cc}
-1 & 1 \\
2 & -2
\end{array}\right) x_{2}=0
$$

By insspection, the second column is minus the first, so a solution is $x_{2}=\binom{1}{1}$ or any multiple thereof (but you were requested to scale x_{2} so that the first component $=1$).
(b) $B x_{k}=\left(1-\lambda_{k}+\lambda_{k}^{2}\right) x_{k}$ is an eigen-equation: B has the same eigenvectors as A but with the eigenvalues replaced by $1-\lambda_{k}+\lambda_{k}^{2}$. That means that

You could have also solved this by diagonalization: $B=X\left(\begin{array}{cc}1-\lambda_{2}+\lambda_{2}^{2} & \\ & 1-\lambda_{2}+\lambda_{2}^{2}\end{array}\right) X^{-1}$
where $X=\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right)$ is the matrix of eigenvectors, but this may be more work since you have to compute X^{-1}, unless you happen to remember the formula for the inverse of a 2×2 matrix.
(c) The key trick, as usual, is that $A^{3 / 2}$ multiplies an eigenvector (where A acts like a scalar) by $\lambda^{3 / 2}$. So, to apply $A^{3 / 2}$ to an arbitrary vector, we just expand that vector in the basis of the eigenvectors and then multiply each term by $\lambda^{3 / 2}$. Here,

$$
\binom{1}{-1}=c_{1} \underbrace{\binom{1}{-2}}_{x_{1}}+c_{2} \underbrace{\binom{1}{1}}_{x_{2}}=\underbrace{\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right)}_{X}\binom{c_{1}}{c_{2}} .
$$

Proceeding by Gaussian elimination, we add twice the first row to the second row to obtain:

$$
\underbrace{\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right)}_{U}\binom{c_{1}}{c_{2}}=\binom{1}{1} \Longrightarrow c_{2}=1 / 3, c_{1}=1-1 / 3=2 / 3
$$

(Yes, the answer requires the dread "fractions." Sorry!) Hence
$A^{3 / 2}\binom{1}{-1}=\frac{2}{3} \lambda_{1}^{3 / 2} x_{1}+\frac{1}{3} \lambda_{2}^{3 / 2} x_{2}=\frac{2}{3}\binom{1}{-2}+\frac{8}{3}\binom{1}{1}=\binom{10 / 3}{4 / 3}$.

Problem $2(7+7+7$ points):

A is a square matrix such that $N(A-I)$ is spanned by $\binom{1}{2}$ and $N(A-5 I)$ is spanned by $\binom{1}{-2}$
(a) Without much calculation, you can tell that A is / is not (choose 1) Hermitian because \qquad _.
(b) What is A ? You can leave your answer as a product of matrices and/or matrix inverses without multiplying/inverting them.
(c) What is e^{A+I} ? You can leave your answer as a product of matrices and/or matrix inverses without multiplying/inverting them, but your answer should not have exponentials of matrices or infinite series.

Solution:

(a) The two nullspace vectors are eigenvectors of A with $\lambda=1$ and 5 , respectively, but they are clearly not orthogonal, so A is not Hermitian.
(b) From the dimensions of the vectors, A must be a 2×2 matrix, and we are given two eigenvectors for two eigenvectors. Hence, it is diagonalizable and

$$
A=X \Lambda X^{-1}=\left(\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& 5
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right)^{-1} .
$$

You weren't required to simplify it further, but it turns out that $A=$ $\left(\begin{array}{cc}3 & -1 \\ -4 & 3\end{array}\right)$ if you work it all out.
(c) e^{A+I} has the same eigenvectors as A, with the eigenvalues replaced by $\lambda \rightarrow e^{\lambda+1}$. So, we can again use the diagonalization

$$
e^{A+I}=\left(\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right)\left(\begin{array}{ll}
e^{2} & \\
& e^{6}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right)^{-1} .
$$

Problem 3 ($4+4+4+4+4+4$ points):
For each of the following, say whether it must be true, it may be true, or it cannot be true. No justification needed.
(a) If a matrix is diagonalizable, it must/may/cannot have orthogonal eigenvectors.
(b) M is a Markov matrix. If $M^{n} x$ converges to a steady state as $n \rightarrow \infty$ for any vector x, the M must/may/cannot be a positive Markov matrix (i.e. have all entries >0).
(c) If a matrix A is not diagonalizable, then $\operatorname{det}(A-\lambda I)$ must/may/cannot have repeated roots.
(d) If $A^{n} x$ goes to zero as $n \rightarrow \infty$ for some x, then A must/may/cannot have an eigenvalue λ with $|\lambda|>1$
(e) If $e^{A t} x$ goes to zero as $t \rightarrow \infty$ for every x, then A must/may/cannot have an eigenvalue λ with $|\lambda|>1$
(f) If A has an eigenvector $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, then it must/may/cannot have an eigenvector $\left(\begin{array}{l}-3 \\ -6 \\ -9\end{array}\right)$.

Solution:

(a) May. (All "normal" matrices $A A^{H}=A A^{H}$, such as Hermitian matrices, are diagonalizable with orthogonal eigenvectors, but the converse is not true: not all diagonalizable matrices are normal. On the other hand, all diagonalizable matrices are similar to normal matrices, so there is some change of basis in which their eigenvectors are orthogonal.)
(b) May. (All positive Markov matrices must yield a steady state-they have a single $\lambda=1$ eigenvalue and all others have $|\lambda|<1$, but the converse is not true: a Markov matrix with zero entries may still have a single $|\lambda|=1$ eigenvalue. On the other hand, although any Markov matrix must have a $\lambda=1$ eigenvalue, it may also have other eigenvalues like $\lambda=-1$ that can cause $M^{n} x$ to oscillate forever without converging.)
(c) Must. Non-diagonalizable (defective) matrices can only arise when the characteristic polynomial has repeated roots. (The converse is not true, however: a matrix with repeated eigenvalues may still be diagonalizable.)
(d) May. Even if there is some $\left|\lambda_{k}\right|>1$, you can still get decaying $A^{n} x$ if x is chosen to be an eigenvector x_{j} of a different eigenvalue with $\left|\lambda_{j}\right|<1$, or to be a linear combination of such eigenvectors.
(e) May. For $e^{A t} x$ to decay, all of its eigenvalues must have negative real parts. This is unrelated to the magnitude $|\lambda|$. For example, it could have an eigenvalue $\lambda=-2$.
(f) Must. $\left(\begin{array}{c}-3 \\ -6 \\ -9\end{array}\right)=-3\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, and all nonzero multiples of an eigenvector are also eigenvectors (of the same eigenvalue).

Problem 4 (25 points):

Suppose A is a real-symmetric matrix with eigenvalues $\lambda_{1}=1, \lambda_{2}=3, \lambda_{3}=0$, and $\lambda_{4}=7$, with corresponding eigenvectors:

$$
x_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), x_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), x_{3}=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right), x_{4}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

Now, we construct a sequence of vectors $y_{0}, y_{1}, y_{2}, \ldots$ where each vector y_{k+1} in the sequence is computed from the previous vector y_{k} by solving

$$
(A-2 I) y_{k+1}=y_{k}
$$

for y_{k+1}. If $y_{0}=\left(\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right)$, give a good approximation for y_{100}.

Solution:

Rearranging, we have $y_{k+1}=(A-2 I)^{-1} y_{k}$, so

$$
y_{k}=(A-2 I)^{-k} y_{0}
$$

For $k=100$, this will be dominated by the largest $|\lambda|$ eigenvalues of $(A-2 I)^{-1}$, but this matrix has the same eigenvectors as A with its eigenvalues λ replaced by $\frac{1}{\lambda-2}$. So, the eigenvalues of $(A-2 I)^{-1}$ are

$$
\frac{1}{\lambda_{1}-2}=-1, \frac{1}{\lambda_{2}-2}=1, \frac{1}{\lambda_{3}-2}=-\frac{1}{2}, \text { and } \frac{1}{\lambda_{4}-2}=\frac{1}{5}
$$

Of these, the largest magnitudes are -1 and +1 , which both have magnitude 1 , so y_{100} will be dominated by the x_{1} and x_{2} terms in the expansion of y_{0}. More explicitly, if we expand y_{0} in the basis of eigenvectors:

$$
y_{0}=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}
$$

then

$$
y_{100}=(A-2 I)^{-100} y_{0}=(-1)^{100} c_{1} x_{1}+1^{100} c_{2} x_{2}+\left(-\frac{1}{2}\right)^{100} c_{3} x_{3}+\left(\frac{1}{5}\right)^{100} c_{4} x_{4} \approx c_{1} x_{1}+c_{2} x_{2}
$$

To compute this explicitly, we merely need to compute c_{1} and c_{2}. But A is Hermitian and hence the eigenvectors must be (and are) orthogonal, so we just
need orthogonal projection to compute the coefficients of the basis expansion:

$$
\begin{aligned}
& c_{1}=\frac{x_{1}^{T}}{x_{1}^{T} x_{1}} y_{0}=\frac{1}{4}\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right)=\frac{5}{2} \\
& c_{2}=\frac{x_{2}^{T}}{x_{2}^{T} x_{2}} y_{0}=\frac{1}{4}\left(\begin{array}{llll}
1 & -1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right)=\frac{1}{2} .
\end{aligned}
$$

Therefore,

$$
y_{100} \approx \frac{5}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{l}
3 \\
2 \\
3 \\
2
\end{array}\right) .
$$

Note that the next biggest term is on the order of $\frac{1}{2^{100}} \approx 7.9 \times 10^{-31}$, so this approximation is pretty darn good! Actually, the $c_{3}=1$ term is the only correction, since $c_{4}=0\left(x_{4}^{T} y_{0}=0\right)$.

