Your name is: _________________________________ Grading

Please circle your recitation:

1) M2 2-132 M. Nevins 2-588 3-4110 monica@math
2) M3 2-131 A. Voronov 2-246 3-3299 voronov@math
3) T10 2-132 A. Edelman 2-380 3-7770 edelman@math
4) T12 2-132 A. Edelman 2-380 3-7770 edelman@math
5) T12 2-131 Z. Spasojevic 2-101 3-4470 zoran@math
6) T1 2-131 Z. Spasojevic 2-101 3-4770 zoran@math
7) T2 2-132 Y. Ma 2-333 3-7826 yanyuan@math

1 Find the eigenvalues and eigenvectors of these matrices:

(a) (10) Projection $P = \frac{aa^T}{a^Ta}$ with $a = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

(b) (10) Rotation $Q = \begin{bmatrix} .6 & -.8 \\ .8 & .6 \end{bmatrix}$

(c) (8) Reflection $R = 2P - I$
2 (a) (10) Find the eigenvalues λ_1, λ_2, λ_3 (NOT the eigenvectors x_1, x_2, x_3) of this Markov matrix:

$$A = \begin{bmatrix} .6 & .6 & 0 \\ .2 & .2 & .2 \\ .2 & .2 & .8 \end{bmatrix}$$

(b) (10) Suppose u_0 is the sum $x_1 + x_2 + x_3$ of the three eigenvectors that you didn’t compute. What is $A^n u_0$?

(c) (4) As $n \to \infty$ what is the limit of $A^n u_0$?
(a) (2 each) Suppose M is any invertible matrix. Circle all the properties of a matrix A that remain the same for $M^{-1}AM$:

- same rank
- same nullspace
- same determinant
- real eigenvalues
- orthonormal eigenvectors
- symmetric positive definiteness

(b) (2 each) This is a similar question but now Q is an orthonormal matrix. Circle the properties of A that remain the same for $Q^{-1}AQ$:

- same column space
- A^k approaches zero as k increases
- orthonormal eigenvectors
- symmetric positive definiteness
- projection matrix
(a) (3 each) Suppose the 5 by 4 matrix A has independent columns. What is the most information you can give about

- the eigenvalues of $A^T A$:
- the eigenvectors of $A^T A$:
- the determinant of $A^T A$:

(b) (9) Find the singular value decomposition (SVD) for this matrix:

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \end{bmatrix}.$$

(c) (8) When the input basis is v_1, \ldots, v_n and the output basis is w_1, \ldots, w_n and the matrix of the linear transformation T using these bases is the identity matrix, what is $T(v_1 + v_2)$?