Final Examination in Linear Algebra: 18.06
 May 18, 1998
 Solutions
 Professor Strang

1. (a) zero vector $\{0\}$
(b) $5-4=1$
(c) $x_{p}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
(d) $x=x_{p}$ because $\boldsymbol{N}(A)=\{0\}$.
(e) $R=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]=\left[\begin{array}{l}I \\ 0\end{array}\right]$
2. (a) $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 2\end{array}\right] \rightarrow U=\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & 0 & -2 \\ 0 & 0 & 0\end{array}\right] \rightarrow R=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.

The free variable is x_{2}. The complete solution is

$$
x=x_{p}+x_{n}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] .
$$

(b) A basis is $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$
3. (a) The columns of B are a basis for the row space of A (because the row space is the orthogonal complement of the nullspace).
(b) N is n by $(n-r) ; B$ is n by r.
4. (a) $\operatorname{det} A=6$
(b) $\operatorname{det} B=6$
(c) $\operatorname{det} C=0$
5. (a) $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 4\end{array}\right]$
(b) $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
(c) $C=\left[\begin{array}{rrr}1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(d) $D=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$

All four matrices are only examples (many other correct answers exist).
6. (a) $\operatorname{rank}(B)=1$; all multiples of u_{1} are in the column space; the vectors $v_{1}-v_{2}$ and v_{3} are a basis for the nullspace.
(b) $A A^{T}=\left(u_{1} v_{1}^{T}+u_{2} v_{2}^{T}\right)\left(v_{1} u_{1}^{T}+v_{2} u_{2}^{T}\right)=u_{1} u_{1}^{T}+u_{2} u_{2}^{T}$ since $v_{1}^{T} v_{2}=0$. $A A^{T}$ is symmetric and it equals $\left(A A^{T}\right)^{2}$:

$$
\left(u_{1} u_{1}^{T}+u_{2} u_{2}^{T}\right)\left(u_{1} u_{1}^{T}+u_{2} u_{2}^{T}\right)=u_{1} u_{1}^{T}+u_{2} u_{2}^{T}
$$

(The eigenvalues of $A A^{T}$ are $1,1,0$)
(c) $A^{T} A=v_{1} v_{1}^{T}+v_{2} v_{2}^{T}$ since $u_{1}^{T} u_{2}=0$.

$$
\begin{aligned}
A^{T} A v_{1} & =\left(v_{1} v_{1}^{T}+v_{2} v_{2}^{T}\right) v_{1}=v_{1} \\
A^{T} A v_{2} & =\left(v_{1} v_{1}^{T}+v_{2} v_{2}^{T}\right) v_{2}=v_{2}
\end{aligned}
$$

Since v_{1}, v_{2} are a basis for $\mathbf{R}^{2}, A^{T} A v=v$ for all v.
7. (a) $A x=b$ is $\left[\begin{array}{rr}1 & -1 \\ 1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ B\end{array}\right]$. This is solvable if $\underline{B=2}$.
(b) $A^{T} A \bar{x}=A^{T} b$ is

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
\bar{C} \\
\bar{D}
\end{array}\right]=\left[\begin{array}{c}
1+B \\
B
\end{array}\right]
$$

Then $\bar{C}=\frac{1+B}{3}$ and $\bar{D}=\frac{B}{2}$
(c) $A^{T} A \bar{x}=A^{T} b$ is

$$
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad p=A \bar{x}=\left[\begin{array}{rr}
1 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 / 3 \\
1 / 2
\end{array}\right]=\left[\begin{array}{r}
-1 / 6 \\
1 / 3 \\
5 / 6
\end{array}\right] .
$$

(d) $Q=\left[\begin{array}{rr}1 / \sqrt{3} & -1 / \sqrt{2} \\ 1 / \sqrt{3} & 0 \\ 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right]$ columns were already orthogonal, now orthonormal
8. (a) $\lambda=1,1,4$. Eigenvectors can be

$$
\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(could also be chosen orthonormal because $A=A^{T}$)
(b) Circle all the properties of this matrix A :
A is a projection matrix
A is a positive definite matrix
A is a Markov matrix
A has determinant larger than trace
A has three orthonormal eigenvectors
A can be factored into $A=L U$
(c)

$$
\begin{aligned}
{\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] } & =\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
A^{100}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] & =1^{100}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]+4^{100}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
4^{100}+1 \\
4^{100}-1 \\
4^{100}
\end{array}\right] .
\end{aligned}
$$

