Final Examination in Linear Algebra: 18.06May 18, 1998SolutionsProfessor Strang

1. (a) zero vector
$$\{0\}$$

(b) $5-4=1$
(c) $x_p = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$
(d) $x = x_p$ because $\mathbf{N}(A) = \{0\}$.
(e) $R = \begin{bmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I\\0 \end{bmatrix}$
2. (a) $A = \begin{bmatrix} 1 & 1 & 2\\1 & 1 & 2\\2 & 2 & 2 \end{bmatrix} \longrightarrow U = \begin{bmatrix} 1 & 1 & 2\\0 & 0 & -2\\0 & 0 & 0 \end{bmatrix} \longrightarrow R = \begin{bmatrix} 1 & 1 & 0\\0 & 0 & 1\\0 & 0 & 0 \end{bmatrix}$.

The free variable is x_2 . The complete solution is

$$x = x_p + x_n = \begin{bmatrix} 2\\0\\0 \end{bmatrix} + x_2 \begin{bmatrix} -1\\1\\0 \end{bmatrix}.$$
(b) A basis is
$$\begin{bmatrix} 1\\1\\2 \end{bmatrix}$$
 and
$$\begin{bmatrix} 2\\2\\2 \end{bmatrix}$$

- 3. (a) The columns of B are a basis for the row space of A (because the row space is the orthogonal complement of the nullspace).
 - (b) N is n by (n r); B is n by r.

4. (a)
$$\det A = 6$$

- (b) $\det B = 6$
- (c) $\det C = 0$

5. (a)
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

(b) $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
(c) $C = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
(d) $D = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

All four matrices are only examples (many other correct answers exist).

- 6. (a) rank(B) = 1; all multiples of u_1 are in the column space; the vectors $v_1 v_2$ and v_3 are a basis for the nullspace.
 - (b) $AA^T = (u_1v_1^T + u_2v_2^T)(v_1u_1^T + v_2u_2^T) = u_1u_1^T + u_2u_2^T$ since $v_1^Tv_2 = 0$. AA^T is symmetric and it equals $(AA^T)^2$:

$$(u_1u_1^T + u_2u_2^T)(u_1u_1^T + u_2u_2^T) = u_1u_1^T + u_2u_2^T$$

(The eigenvalues of AA^T are 1, 1, 0)

(c) $A^T A = v_1 v_1^T + v_2 v_2^T$ since $u_1^T u_2 = 0$.

$$A^{T}Av_{1} = (v_{1}v_{1}^{T} + v_{2}v_{2}^{T})v_{1} = v_{1}$$

$$A^{T}Av_{2} = (v_{1}v_{1}^{T} + v_{2}v_{2}^{T})v_{2} = v_{2}$$

Since v_1, v_2 are a basis for \mathbf{R}^2 , $A^T A v = v$ for all v.

7. (a)
$$Ax = b$$
 is $\begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ B \end{bmatrix}$. This is solvable if $\underline{B} = 2$.
(b) $A^T A \bar{x} = A^T b$ is
$$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \overline{C} \\ \overline{D} \end{bmatrix} = \begin{bmatrix} 1+B \\ B \end{bmatrix}.$$
Then $\overline{C} = \frac{1+B}{3}$ and $\overline{D} = \frac{B}{2}$
(c) $A^T A \bar{x} = A^T b$ is
$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad p = A \bar{x} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/2 \end{bmatrix} = \begin{bmatrix} -1/6 \\ 1/3 \\ 5/6 \end{bmatrix}.$$
(d) $Q = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix}$ columns were already orthogonal, now orthonormal

8. (a) $\lambda = 1, 1, 4$. Eigenvectors can be

$$\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$

(could also be chosen orthonormal because $A = A^T$)

(b) Circle all the properties of this matrix A:

 \boldsymbol{A} is a projection matrix

A is a positive definite matrix

 \boldsymbol{A} is a Markov matrix

 ${\cal A}$ has determinant larger than trace

A has three orthonormal eigenvectors

A can be factored into
$$A = LU$$

(c)

$$\begin{bmatrix} 2\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
$$A^{100} \begin{bmatrix} 2\\0\\1 \end{bmatrix} = 1^{100} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + 4^{100} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 4^{100}+1\\4^{100}-1\\4^{100} \end{bmatrix}.$$