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Every polynomial of degree n has n roots; every continuous function
on [0, 1] attains its maximum; every real symmetric matrix has a complete
set of orthonormal eigenvectors. “General theorems” are a big part of the
mathematics we know. We can hardly resist the urge to generalize further!
Remove hypotheses, make the theorem tighter and more difficult, include
more functions, move into Hilbert space,. . . It’s in our nature.

The other extreme in mathematics might be called the “particular case”.
One specific function or group or matrix becomes special. It obeys the general
rules, like everyone else. At the same time it has some little twist that
connects familiar objects in a neat way. This paper is about an extremely
particular case. The familiar object is Pascal’s triangle.

The little twist begins by putting that triangle of binomial coefficients
into a matrix. Three different matrices—symmetric, lower triangular, and
upper triangular—can hold Pascal’s triangle in a convenient way. Truncation
produces n by n matrices Sn and Ln and Un—the pattern is visible for n = 4:

S4 =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

 L4 =


1
1 1
1 2 1
1 3 3 1

 U4 =


1 1 1 1

1 2 3
1 3

1

 .

We mention first a very specific fact: The determinant of every Sn is 1.
(If we emphasized det Ln = 1 and det Un = 1, you would write to the Editor.
Too special !) Determinants are often a surface reflection of a deeper property
within the matrix. That is true here, and the connection between the three
matrices is quickly revealed. It holds for every n:

S equals L times U

and then (det S) = (det L)(det U) = 1 .

This identity S = LU is an instance of one of the four great matrix
factorizations of linear algebra [10]:
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1. Triangular times triangular: A = LU from Gaussian elimination

2. Orthogonal times triangular: A = QR from Gram-Schmidt

3. Orthogonal times diagonal times orthogonal: A = UΣV T with
the singular values in Σ

4. Diagonalization: A = SΛS−1 with eigenvalues in Λ and eigenvectors
in S. Symmetric matrices allow S−1 = ST—orthonormal eigenvectors
and real eigenvalues in the spectral theorem.

In A = LU , the triangular U is the goal of elimination. The pivots lie on its
diagonal (those are ratios det An/ det An− 1, so the pivots for Pascal are all
1’s). We reach U by row operations that are recorded in L. Then Ax = b
is solved by forward elimination and back substitution. In principle this is
straightforward, but the cost adds up: billions a year for the most frequently
used algorithm in scientific computing.

For a symmetric positive definite matrix, we can symmetrize A = LU
to S = LLT (sometimes named after Cholesky). That is Pascal’s case with
U = LT, as we want to prove.

This article will offer four proofs of S = LU . The first three are known,
the fourth might be partly new. They come from thinking about different
ways to approach Pascal’s triangle:

First proof : The binomial coefficients satisfy the right identity

Second proof : S, L, and U count paths on a directed graph

Third proof : Pascal’s recursion generates all three matrices

Fourth proof : The coefficients of (1 + x)n have a functional meaning.

The binomial identity that equates Sij with
∑

LikUkj naturally comes first—
but it gives no hint of the “source” of S = LU . The path-counting proof
(which multiplies matrices by gluing graphs!) is more appealing. The re-
cursive proof uses elimination and induction. The functional proof is the
shortest: Verify Sv = LUv for the family of vectors v = (1, x, x2, . . .). This
allows the “meaning” of Pascal’s triangle to come through.

The reader can guess that the last proof is our favorite. It leads toward
larger ideas; transformations like x → 1+x and x → 1/(1−x) are particular
cases of x → (ax+ b)/(cx+ d). We are close to matrix representations of the
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Möbius group. At the same time S, L, and U arise in the multipole method—
one of the “top ten algorithms of the 20th century,” which has tremendously
speeded up the evaluation of sums

∑
ak/(x− rk).

You see that the urge to generalize is truly irresistible! We hereby promise
not to let it overwhelm this short paper. Our purpose is only to look at Pas-
cal’s triangle from four different directions—identities, graphs, recursions,
and functions. Pascal matrices led to several Worked Examples in the new
textbook [10], and this paper is on the course web page web.mit.edu/18.06/.

Proof 1: Matrix Multiplication

The direct proof multiplies LU to reach S. All three matrices start with

row i = 0 and column j = 0. Then the i, k entry of L is
(

i
k

)
= “i choose k”.

Multiplying row i of L times column j of U = LT, the goal is to verify that∑
LikUkj =

n∑
k=0

(
i

k

)(
j

k

)
=

(
i + j

i

)
= Sij . (1)

Separate i + j objects into two groups, containing i objects and j objects.
If we select i− k objects from the first group and k from the second group,
we have chosen i objects out of i + j. The first selection can be made in(

i
i−k

)
=

(
i
k

)
ways and the second selection in

(
j
k

)
ways. Any number k from

0 to min(i, j) is admissible, so the total count agrees with equation (1):

min(i,j)∑
k=0

(
i

k

)(
j

k

)
=

(
i + j

i

)
. (2)

In this form the sum accounts for the triangularity of L and U . The binomial
coefficients are zero for k > i and k > j.

A shorter proof is hard to imagine (though Proof 4 comes close). But
the discovery of LU = S would be unlikely this way. Binomial people would
know the identity (1), the rest of us are conditioned to take their word for it.
David Ingerman showed us how to multiply matrices by “gluing graphs”—
and this gives a visual explanation [3, 7] of LU = S.

Proof 2: Gluing Graphs

The first step is to identify Sij as the number of paths from ai to bj on the
up-and-left directed graph in Figure 1.

3



Only one path goes directly up from a0 to bj , agreeing with S0j = 1 in
the top row of S. One path goes directly across from ai to b0, agreeing with
Si0 = 1. From that row and column the rest of S is built recursively, based
on Pascal’s rule Si− 1, j + Si, j − 1 = Sij . We show that path-counting gives
the same rule (and thus the same matrix S).
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Figure 1: The directed graph for the path-counting matrix S.

A typical entry is S22 = “4 choose 2” = 6. There are 6 paths from a2
to b2 (3 that start across and 3 that start upwards). The paths that start
across then go from ai− 1 to bj ; by induction those are counted by Si− 1, j .
The paths that start upward go to level 1 and from there to bj . Those are
counted by Si, j − 1 and Pascal’s rule is confirmed. (For this we imagine the
whole graph shifted down one level, so we are actually going from ai to bj − 1
in Si, j − 1 ways.) We do not know who first connected the matrix S with
this graph.

Now cut the graph along the 45◦ line in Figure 2. We want to show that
Lik counts the paths from ai to the (k, k) point on that diagonal line. Then
Ukj counts paths from the 45◦ line to bj .

The reasoning is again by induction. Start from Li0 = 1 for the single
path across from ai to (0, 0). Also Lii = 1 for the single path up to (i, i).
Pascal’s recursion is Lik = Li− 1, k + Li− 1, k − 1 when his triangle is placed
into L.

By induction, Li− 1, k counts the paths that start to the left from ai,
and go from ai− 1 to (k, k). The other paths to (k, k) start upward from ai.
By shifting the graph down and left (along the 45◦ line) we imagine these
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Figure 2: L counts paths to the 45◦ gluing line. U counts paths above.

paths going from ai− 1 to the point (k − 1, k − 1). Those continuations of
the upward start are counted by Li− 1, k − 1. The path counts agree with
Pascal’s recursion, so they are the entries of L. Similarly Ukj counts the
paths from (k, k) to bj .

It only remains to recognize that gluing the graphs is equivalent to mul-
tiplying L times U ! The term LikUkj counts paths from ai to bj through
(k, k). Then the sum over k counts all paths (and agrees with Sij). The 6
paths from a2 to b2 come from 1 · 1 + 2 · 2 + 1 · 1. This completes the second
proof.

One generalization of this proof (to be strongly resisted) comes from
removing edges from the graph. We might remove the edge from a1 to a0.
That cancels all paths that go across to a0 before going up. The zeroth row of
1’s is subtracted from all other rows of S, which is the first step of Gaussian
elimination.

Those row operations (edge removals) are at the heart of Proof 3. S = LU
is the fundamental matrix factorization produced by elimination.

Proof 3: Gaussian Elimination

The steps of elimination produce zeros below each pivot, one column at a
time. The first pivot in S (and also L) is its upper left entry 1. Normally
we subtract multiples of the first equation from those below. For the Pascal
matrices Brawer and Pirovino [1] noticed that we could subtract each row
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from the row beneath.
The elimination matrix E has entries Eii = 1 and Ei, i− 1 = −1. For 4

by 4 matrices you can see how the next smaller L appears:

EL4 =


1

−1 1
−1 1
−1 1




1
1 1
1 2 1
1 3 3 1

=


1
0 1
0 1 1
0 1 2 1

=

[
1 0
0 L3

]
. (3)

E times L gives the Pascal recursion Lik−Li− 1, k = Li− 1, k − 1, producing
the smaller matrix Ln− 1—shifted down as in (3).

This suggests a proof by induction. Assume that Ln− 1Un− 1 = Sn− 1.
Then equation (3) and its transpose give

(ELn)(UnET) =

[
1 0
0 Ln− 1

] [
1 0
0 Un− 1

]
=

[
1 0
0 Sn− 1

]
. (4)

We hope that the last matrix agrees with ESnET. Then we can premultiply
by E−1 and postmultiply by (ET)−1, to conclude that LnUn = Sn.

Look at the i, j entry of ESnET:

(ESn)ij = Sij − Si− 1, j and

(ESnET)ij = (Sij − Si− 1, j)− (Si, j − 1 − Si− 1, j − 1) .

In that last expression, the first three terms cancel to leave Si− 1, j − 1. This
is the (i, j) entry for the smaller matrix Sn− 1, shifted down as in (4). The
induction is complete.

This “algorithmic” approach could have led to LU = S without knowing
that result in advance. On the graph, multiplying by E is like removing all
horizontal edges that reach the 45◦ line from the right. Then all paths must
go upward to that line. In counting, we may take their last step for granted—
leaving a triangular graph one size smaller (corresponding to Ln− 1!).

The complete elimination from S to U corresponds to removing all hor-
izontal edges below the 45◦ line. Then L = I since every path to that line
goes straight up. Elimination usually clears out columns of S (and columns
of edges) but this does not leave a smaller Sn− 1. The good elimination order
multiplies by E to remove horizontal edges a diagonal at a time. This gave
the induction in Proof 3.

6



Powers, Inverse, and Logarithm of L

In preparing for Proof 4, consider the “functional” meaning of L. Every
Taylor series around zero is the inner product of a coefficient vector a =
(a0, a1, a2, . . .) with the moment vector v = (1, x, x2, . . .). The Taylor series
represents a function f(x):∑

akx
k = aTv = aTL−1Lv . (5)

Here L becomes an infinite triangular matrix, containing all of the Pascal
triangle. Multiplying Lv shows that (5) ends with a series in powers of
(1 + x):

Lv =


1
1 1
1 2 1
· · · ·




1
x
x2

·

 =


1

1 + x
(1 + x)2

·

 (6)

The simple multiplication (6) is very useful. A second multiplication by
L would give powers of 2 + x. Multiplication by Lp gives powers of p + x.

The i, j entry of Lp must be pi−j
(

i
j

)
, as earlier authors have observed (the 4

by 4 case is displayed):

Lp =


1
p 1
p2 2p 1
p3 3p2 3p 1

 and LpLq = Lp+q . (7)

For all matrix sizes n = 1, 2, . . . ,∞ the powers Lp are a representation of the
groups Z and R (integer p and real p). The inverse matrix L−1 has the same
form with p = −1. Call and Velleman [2] found L−1 which is DLD−1:

L−1 =


1

−1 1
1 −2 1

−1 3 −3 1

 =


1
−1

1
−1




1
1 1
1 2 1
1 3 3 1




1
−1

1
−1

 .

(8)
Lp has the exponential form eAp and we can compute A = log L:

A = lim
p→0

eAp − I

p
= lim

p→0

Lp − I

p
=


0
1 0
0 2 0
0 0 3 0

 . (9)
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The series L = eA = I + A + A2/2! + · · · has only n terms. It produces the
binomial coefficients in L. This matrix A has no negative subdeterminants.
Then its exponential L is also totally positive [8, page 115] and so is the
product S = LU .

Pascal Eigenvalues

A brief comment about eigenvalues can come before Proof 4 of S = LU .
The eigenvalues of L and U are their diagonal entries, all 1’s. Transposing
L−1 = DLD−1 in equation (8) leads to U−1 = DUD−1. So L and U are
similar to their inverses (and matrices are always similar to their transposes).

It is more remarkable that S−1 is similar to S. The eigenvalues of S
must come in reciprocal pairs λ and 1/λ, since similar matrices have the same
eigenvalues:

S−1 = U−1L−1 = DUD−1DLD−1

= (DU)(LU)(U−1D−1) = (DU)S(DU)−1 . (10)

The eigenvalues of the 3 by 3 symmetric Pascal matrix are λ1 = 4 +
√

15
and λ2 = 4 −

√
15 and λ3 = 1. Then λ1λ2 = 1 gives a reciprocal pair, and

λ3 = 1 is self-reciprocal. The references in Higham’s excellent book [5], and
help pascal in MATLAB, lead to other properties of S = pascal(n).

Proof 4: Equality of Functions

If Sv = LUv is verified for enough vectors v , we are justified in concluding
that S = LU . Our fourth and favorite proof chooses the infinite vectors
v = (1, x, x2, . . .). The top row of Sv displays the geometric series 1 + x +
x2 + · · · = 1/(1 − x). Multiply each row of Sv by that top row to see the
next row. The functional meaning of S is in the binomial theorem.

We need |x| < 1 for convergence (x could be a complex number):

Sv =


1 1 1 1 ·
1 2 3 4 ·
1 3 6 10 ·
1 4 10 20 ·
· · · · ·




1
x
x2

x3

·

 =


1/(1− x)
1/(1− x)2

1/(1− x)3

1/(1− x)4

·

 . (11)
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The same result should come from LUv . The first step Uv has extra powers
of x because the rows have been shifted:

Uv =


1 1 1 1 ·
0 1 2 3 ·
0 0 1 3 ·
0 0 0 1 ·
· · · · ·




1
x
x2

x3

·

 =


1/(1− x)
x/(1− x)2

x2/(1− x)3

x3/(1− x)4

·

 . (12)

Factoring out 1/(1−x), the components of Uv are the powers of a = x/(1−x).
Now multiply by L, with no problem of convergence because all sums are
finite. The nth row of L contains the binomial coefficients for (1 + a)n =
(1 + x

1−x
)n = ( 1

1−x
)n:

L(Uv) =
1

1− x


1 0 0 0 ·
1 1 0 0 ·
1 2 1 0 ·
1 3 3 1 ·
· · · · ·




1
a
a2

a3

·

 =


1/(1− x)
1/(1− x)2

1/(1− x)3

1/(1− x)4

·

 . (13)

Thus Sv = LUv for the vectors v = (1, x, x2, . . .). Does it follow that
S = LU? The choice x = 0 gives the coordinate vector v 0 = (1, 0, 0, . . .).
Then Sv 0 = LUv 0 gives agreement between the first columns of S and LU
(which are all ones). If we can construct the other coordinate vectors from
the v ’s, then all the columns of S and LU must agree.

The quickest way to reach (0, 1, 0, . . .) is to differentiate v at x = 0.
Introduce v∆ = (1, ∆, ∆2, . . .) and form a linear combination of v∆ and v 0:

S

(
v∆ − v 0

∆

)
= LU

(
v∆ − v 0

∆

)
. (14)

Let ∆ → 0. Every series is uniformly convergent, every function is analytic,
every derivative is legitimate. Higher derivatives give the other coordinate
vectors, and the columns of S and LU are identical. By working with infinite
matrices, S = LU is confirmed for all orders n at the same time.

An alternative is to see the coordinate vectors as linear combinations of
(a continuum of) v ’s, using Cauchy’s integral theorem around x = z = 0.

These functional proofs need an analyst somewhere, since an algebraist
working alone might apply S to Sv . The powers of this positive matrix are
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suddenly negative from
∑∞

1 (1 − x)−n = −1/x. Even worse if you multiply
again by S to discover S3v = −v :

S2v =


−1/x

−(x− 1)/x2

−(x− 1)2/x3

·

 and S3v =


−1
−x
−x2

·

 = −v . (15)

We seem to have proved that S3 = −I. There may be some slight issue of
convergence. This didn’t bother Cauchy (on his good days), and we must be
seeing a matrix generalization of his geometric series for 1/(1− 2):

1 + 2 + 4 + 8 + · · · = −1 . (16)

Möbius Matrices

A true algebraist would look for matrices of Pascal type in a group represen-
tation. Suppose the infinite matrices S and U and L represent the Möbius
transformations x → 1/(1 − x) and x/(1 − x) and x + 1 that we met in
Proof 4. Then LU = S would have an even shorter Proof 5, by composing
y = x/(1− x) and z = y + 1 from L and U :

z =
x

1− x
+ 1 =

1

1− x
.

We hope to study a larger class of “Möbius matrices” for (ax + b)/(cx + d).
A finite-dimensional representation leads to M3 = I for the rotated matrix
with alternating signs known to MATLAB as M = pascal(n, 2). Here is n = 3:

M3 =

 1 1 1
−2 −1 0

1 0 0

3

= I because
1

1− 1
1− 1

1−x

= x .

Waterhouse [11] applied that idea (mod p) to prove a theorem of Strauss: If
n is a power of p, then S3 = I (mod p). It seems quite possible that digital
transforms based on Pascal matrices might be waiting for discovery. That
would be ironic and wonderful, if Pascal’s triangle turned out to be applied
mathematics.
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Conclusion: Two Opinions of Pascal’s Triangle

Pascal was not the first to create his triangle! Edwards [4] describes the
gradual discovery of its entries, in Persia (Omar Khayyam himself) and in
China and Europe and India. The proofs were Pascal’s (including a proof by
induction that became a model for future mathematicians). We very much
appreciated the sentiments of James Bernoulli, who completed the connection
with powers by computing 1p + · · ·+ Np:

“This Table has truly exceptional and admirable properties; for
besides concealing within itself the mysteries of Combinatorics,
it is known by those expert in the higher parts of Mathematics
also to hold the foremost secrets of the whole of the rest of the
subject.”

No one could say better than that. But a genius of our own day expressed a
different thought, which our friendly readers would surely never share [9]:

“There are so many relations present that when someone finds a
new identity, there aren’t many people who get excited about it
any more, except the discoverer!”
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