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When Einstein was creating his theory of gravitation, he checked that it re-
produced the predictions of Newtonian gravity if the speed of light became
infinite. When Feynman was creating his path-integral formulation of rel-
ativistic quantum mechanics, he checked that it reproduced the results of
ordinary, non-relativistic quantum mechanics.

These approaches to discovery are examples of the method of easy cases
based on the idea that a correct solution works in all cases – including the
easy ones. This tool enables you to check and even guess answers while
avoiding hard work. Let’s sharpen the tool by trying it in problems from
integration, plane geometry, solid geometry, and fluid mechanics.

2.1 Gaussian integral revisited
As the first illustration, retry the Gaussian integral from Section 1.3. Here
are two possible answers to the integration:∫∞

−∞
e−αx2

dx =
√

πα or
√

π/α?
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This question was answered in Section 1.3.3 using dimensions. A second
method is to change the integration variable to z2 = αx2. But forget these
two methods temporarily in order to practice easy cases.

The correct solution works for all α, or for all α where the integral makes
sense. That caveat excludes the range α < 0 and maybe even α = 0, so the
solution must work in the remaining range α > 0. In that range, choose
easy cases: values of α where the integral is easy to evaluate.

2.1.1 Extreme values of α

The integral is easy in the particular cases α = ∞ or α = 0: the two ex-
tremes of the range α > 0. This observation is the basis of a rule of thumb:

Extreme cases are often easy cases.

What happens when α =∞?

e−10x2

α→∞

0 1-1

As the first easy case, try the extreme α = ∞ or
rather approach the extreme by imagining that
α rises to∞. Then the exponent −αx2 becomes
very negative even when x is close to zero. The
exponential of a large negative number is nearly
zero, so the bell curve narrows to a sliver, and its area shrinks toward zero.
Therefore, as α → ∞ the integral shrinks to zero. This result refutes the
first choice

√
πα, which goes to infinity as α → ∞. The second choice√

π/α correctly goes to zero, so it passes the α =∞ test.

e−x2/6α→ 0

0 1-1

What happens when α = 0?

The other extreme α = 0 provides the second
easy case. Near that extreme, the bell curve flat-
tens into a horizontal line with height 1. Inte-
grated over an infinite range, its area is infinite. This result refutes the first
choice

√
πα, is zero when α = 0. The second choice

√
π/α correctly goes

to infinity, so it passes the α = 0 test.

In short, the second option passes both easy-case tests and the first option
fails them. If the two options were the only choices, then choose

√
π/α.

Suppose, however, that
√

2/α joins the choices. How could you decide
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between
√

2/α and
√

π/α? Both behave correctly in the two extreme cases.
They even have identical dimensions, so dimensions are also not decisive.

2.1.2 The almost-as-easy case α = 1

To make the choice, try a third easy case that lies between the extremes
α = 0 and α = ∞: the almost-as-easy case α = 1. In that case the integral
simplifies to

I ≡
∫∞
−∞

e−x2
dx,

where the≡ notation means ‘is defined to be’ rather than the more common
mathematics meaning of modulo. This integral is the simplest Gaussian in-
tegral and, as demonstrated in this section, its value is

√
π. The method

of evaluation is to construct I2 and to rewrite that integral in polar coordi-
nates, whereupon it becomes simple.

2.1.2.1 Constructing I2

Here is I2:

I2 =

(∫∞
−∞

e−x2
dx

)
×

(∫∞
−∞

e−x2
dx

)
.

The integration variables are arbitrary. So, in the second factor, choose y as
the integration variable:

I2 =

(∫∞
−∞

e−x2
dx

)
×

(∫∞
−∞

e−y2
dy

)
.

This choice gives the integration range a simple geometric interpretation.
To see it, group the integral signs together and the integrands e−x2

and
e−y2

together:

I2 =

∫∞
−∞

∫∞
−∞

e−x2
e−y2

dx dy.

The two exponentials multiply together to make e−(x2+y2). Since x2+y2 =

r2 where r is distance from the origin, the integrand is e−r2
. This function

is integrated over all possible x and y: in other words, over the entire plane.
So I2 is the integral of e−r2

over the whole plane:
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I2 =

∫
plane

e−r2
dA,

where dA is the area element.

2.1.2.2 Evaluating in polar coordinates

dA

r

d
r r d

θ

θ = 0
r = 0r = 0

An integrand with r as its only variable suggests
polar coordinates. In polar coordinates, the area
element is dA = r dr dθ, so

I2 =

∫
plane

e−r2
r dr dθ︸ ︷︷ ︸

dA

.

The integration region – the entire plane – contains
all possible r and all possible θ, so r goes from 0 to∞, and θ goes from 0 to
2π: ∫

plane
dA =

∫2π

0

∫∞
0

r dr dθ

So I2 is

I2 =

∫2π

0

∫∞
0

e−r2
r dr dθ︸ ︷︷ ︸

dA

.

Now shuffle the pieces and integral signs to separate the θ and r integrals:

I2 =

∫2π

0
dθ

∫∞
0

e−r2
r dr.

The θ integral is simply 2π. The r integrand re−r2
is easy to integrate be-

cause of the factor of r, which is almost the derivative of the r2 in the expo-
nent:∫

e−r2
r dr = −

1

2
e−r2

+ constant,

and∫∞
0

e−r2
r dr =

1

2
.

Now multiply the r integral and the θ integral:
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I2 = θ integral︸ ︷︷ ︸
2π

× r integral︸ ︷︷ ︸
1/2

= π

The Gaussian integral I is the square root of I2:

I ≡
∫∞
−∞

e−x2
dx =

√
π.

Although the easy case α = 1 was not as easy as α = 0 or α = ∞, setting
α = 1 makes α vanish from the calculation, thereby simplifying it.

2.1.3 Using the easy-case tests

The third easy-case test α = 1 helps pass judgment on various choices
(guesses) for the original integral∫∞

−∞
e−αx2

dx.

Among the choices,
√

2/α,
√

π/α, and
√

πα, only
√

π/α passes all three
tests, so∫∞

−∞
e−αx2

dx =

√
π

α
.

In summary, check any formula using easy cases:

1. Pick parameter values that make the analysis easy. These values are the
easy cases.

2. In the easy cases, predict the behavior without doing hard work.

3. Check that the predictions match the proposed formula. If not, throw it
out and ask for or invent another!

Easy cases are not the only way to check formulas. Dimensions also can
narrow the Gaussian-integral choices, as was shown in Section 1.3. Fur-
thermore, dimensions refute many choices that pass the easy-case tests –
for example

√
π/α and

√
π/α2.

However, easy cases are still useful. First, they are quick. They do not
require inventing or computing dimensions for x, α, dx, and the whole in-
tegral – the extensive analysis of Section 1.3. Second, easy cases can decide
between choices with identical dimensions like

√
2/α and

√
π/α. So, keep

both tools ready in your toolbox.
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Problem 2.1 Which easy-case tests does it pass?
Consider the proposal∫∞

−∞
e−αx2

dx =

√
π − 1

α
+ 1.

Which easy-case tests does it pass?

Problem 2.2 Passing the three tests
Check that

√
π/α and

√
π/α2 pass the three easy-case tests α = 0, α = 1, and

α =∞.

Problem 2.3 Plausible, incorrect alternative

Can you invent an alternative to
√

π/α that has valid dimensions and passes
all three easy-case tests?

2.2 Area of an ellipse
Easy cases work not only in calculus. They are useful in any problem where
a formula needs to be checked or guessed – for example, areas and volumes
of geometric shapes.

b

a

This ellipse has semimajor axis a and semiminor axis
b, and here are several candidates for its area A:

a. ab2

b. a2 + b2

c. a3/b

d. 2ab

e. πab

What are the merits, or otherwise, of each choice?

Let’s examine each candidate using easy cases.

A = ab2 . This candidate has dimensions of L3, whereas area has dimen-
sions of L2. So it fails the dimensions test and does not even graduate to the
easy-cases tests. However, the remaining choices have correct dimensions,
so they require the method of easy cases.

A = a2 + b2 . Likely easy cases are the extreme values of the parameters a

and b. So try a = 0 to produce an infinitesimally thin ellipse. This ellipse
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has zero area, yet when a = 0 the candidate A = a2 + b2 predicts A = b2.
So the candidate fails the a = 0 easy-case test.

A = a3/b . When a = 0, this candidate correctly predicts zero area. Since
a = 0 was a useful test, and the axis labels a and b are almost interchange-
able, b = 0 should also be a useful easy case. It also produces an infinitesi-
mally thin ellipse with zero area; alas, the candidate a3/b predicts infinite
area, so it fails the new b = 0 test.

A = 2ab . This candidate shows promise: When a = 0 or b = 0, the actual
and predicted areas are zero, so it passes both easy-case tests. Another easy
case for a and b is when a/b = 1 or when a = b. Then the ellipse becomes
a circle with radius a and area πa2. The candidate 2ab, however, predicts
A = 2a2 (or A = 2b2), so it fails the new a = b test.

A = πab . This candidate passes all three tests: a = 0, b = 0, and a =

b. With every test that a candidate passes, our confidence in it increases.
Indeed, πab is the correct area (Problem 2.4).

Problem 2.4 Area by calculus
Show using integration that A = πab. See Problem 7.1 for an alternative
method.

Problem 2.5 Generalization
What is the volume of an ellipsoid with principal radii a, b, and c?

Problem 2.6 Inventing a passing candidate
Can you invent a second candidate for the area that has correct dimensions
and passes the a = 0, b = 0, and a = b tests?

2.2.1 How to choose extreme cases

In analyzing the candidates for the area of an ellipse, one easy case was the
extreme a = 0, and another easy case was its symmetric counterpart b = 0.
Less obviously, symmetry also suggests the third easy case a = b.

To see how, notice that the symmetry between a and b requires that they
have identical dimensions. Therefore a natural comparison is their dimen-
sionless ratio a/b. This ratio ranges between 0 and∞:

∞00
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And this range has two obviously special points: the endpoints 0 and ∞
corresponding to the first two easy cases a = 0 and b = 0 respectively.

However, the ratio a/b breaks the full symmetry between a and b. For
example, the condition 0 6 a 6 b restricts the ratio to a finite range, [0, 1];
whereas the symmetric condition 0 6 b 6 a restricts the ratio to an infinite
range, [1,∞].

Fixing this broken symmetry will make a = b a natural easy case. One
fully symmetric, dimensionless combination of a and b is log(a/b). This
combination ranges between −∞ and∞:

∞00−∞

The special points in this range include the endpoints −∞ and ∞ corre-
sponding again to the easy cases a = 0 and b = 0 respectively; and the
midpoint 0 corresponding to the third easy case a = b. In short, extreme
cases are not the only easy cases; and easy cases also arise by equating
symmetric quantities.

Problem 2.7 Other symmetric combinations
Invent other symmetric, dimensionless combinations of a and b – such as
(a − b)/(a + b). Investigate whether those combinations have a = b as an
interesting point.

2.3 Volume of a truncated pyramid
The two preceding examples – the Gaussian integral (Section 2.1) and the
area of an ellipse (Section 2.2) – used easy cases to check proposed formu-
las, as a method of analysis. The next level of sophistication – the next level
in Bloom’s taxonomy [6] – is to use easy cases as a method of synthesis.

h

b

a
As an example, start with a pyramid with a square
base and slice a piece from its top using a knife
parallel to the base. This so-called frustum has a
square base and square top parallel to the base. Let
its height be h, the side length of the base be b, and
the side length of the top be a. What is its volume?

Since volume has dimensions of L3, candidates such
as ab, ab3, and bh are impossible. However, dimensions cannot distin-
guish among choices with correct dimensions, such as ab2, abh, or even
a2b2/h. Further progress requires creating easy-cases tests.
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2.3.1 Easy cases

The simplest test is h = 0: a pyramid with zero height and therefore ze-
ro volume. This test eliminates the candidate a2b2/h, which has correct
dimensions but, when h = 0, incorrectly predicts infinite volume.

How should volume depend on height?

Candidates that predict zero volume include prod-
ucts such as ha2 or h2a. To choose from such can-
didates, decide how the volume V should depend
on h, the height of the solid. This decision is aided
by a thought experiment. Chop the solid into verti-
cal slivers, each like an oil-drilling core (see figure),
then vary h. For example, doubling h doubles the
height and volume of each sliver; therefore dou-
bling h doubles V . The same thought experiment shows that tripling h

triples V . In short: V ∝ h, which rules out h2a as a possible volume.

Problem 2.8 Another reason that V ∝ h

Use the easy case of a = b to argue that V ∝ h.

The constraint V ∝ h, together with the requirement of dimensional cor-
rectness, means that

V = h× function of a and b with dimensions of L2.

Further easy-cases tests help synthesize that function.

What are other easy cases?

A second easy case is the extreme case a = 0, where the top surface shrinks
to a point. The symmetry between a and b suggests the extreme case b = 0

as another easy case. The symmetry also suggests a = b as a non-extreme
easy case. Let’s apply the three new tests in turn, developing formulas to
synthesize a candidate that passes all the tests.
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h

b

a = 0 . In this extreme case, the truncated pyramid
becomes an ordinary pyramid with height h and
square base of side length b. So that its volume
has dimensions of L3 and is proportional to h, its
volume must have the form V ∼ hb2. This form,
which does not specify the dimensionless constant,
stands for a family of candidates. Perhaps this fam-
ily contains the correct volume for the truncated
pyramid? Each family member passes the a = 0

test, by construction. How do they fare with the other easy cases?

h

a

b = 0 . In this extreme case, the truncated pyramid
becomes an upside-down but otherwise ordinary
pyramid. All the candidates V ∼ hb2 predict zero
volume when b = 0, so all fail the b = 0 test. The
symmetric alternatives V ∼ ha2 pass the b = 0

test; unfortunately, they fail the a = 0 test. Are we
stuck?

Invent a candidate that passes the a = 0 and b = 0

tests.

To a family of candidates that pass the a = 0 and b = 0 tests, add the two
families that pass each test to get V ∼ ha2 + hb2 or

V ∼ h(a2 + b2).

Two other families of candidates that pass both tests include

V ∼ h(a + b)2.

and

V ∼ h(a − b)2.

Choosing among them requires the last easy case: a = b.

a = b . When a = b – the easiest of the last three cases
– the truncated pyramid becomes a rectangular prism with
height h, base area b2 (or a2), and volume hb2. When a =

b, the family of candidates V ∼ h(a2 + b2) predicts hb2

when the dimensionless constant is 1/2. So

V =
1

2
h(a2 + b2)
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passes the a = b test. When a = b, the family of candidates V ∼ h(a + b)2

predicts the correct volume when the dimensionless constant is 1/4. So

V =
1

4
h(a + b)2

passes the a = b test. However, the family of candidate V ∼ h(a − b)2

predict zero volume when a = b, so they all fail the a = b test.

To decide between the survivors V = h(a + b)2/2 and V = h(a + b)2/4,
return to the easy case a = 0. In that extreme case, the survivors predict
V = hb2/2 and V = hb2/4, respectively. These predictions differ in the di-
mensionless constant. If we could somehow guess the correct dimension-
less constant in the volume of an ordinary pyramid, we can decide between
the surviving candidates for the volume of the truncated pyramid.

What is the dimensionless constant?

2.3.2 Finding the dimensionless constant

Finding the dimensionless constant looks like a calculus problem: Slice an
ordinary pyramid into thin horizontal sections, then add (integrate) their
volumes. A simple but surprising alternative is the method of easy cas-
es – surprising because easy cases only rarely determine a dimensionless
constant.

The method is best created with an analogy: Rather than guessing the di-
mensionless constant in the volume of a pyramid, solve a similar but sim-
pler problem – a method discussed in detail in Chapter 6. In this case, let’s
invent a two-dimensional shape and find the dimensionless constant in its
area.

b

h = b

An analogous shape is a triangle with base b and height
h. What is the dimensionless constant in its A ∼ bh? To
reap the full benefit of the analogy, answer that ques-
tion using easy cases rather than calculus. So, choose
b and h to make an easy triangle. The easiest triangle
is a 45◦ right triangle with h = b. Two of these trian-
gles form an easy shape – a square with area b2 – so the
area of one triangle is A = b2/2 when h = b. Therefore, the dimensionless
constant is 1/2 and A = bh/2.

Now extend this reasoning to our three-dimensional solid: What square-
based pyramid, combined with itself a few times, makes an easy solid?
Choosing a pyramid means choosing its base length b and its height h.
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However, only the aspect ratio h/b matters in the analysis – as in the tri-
angle example. So, our procedure will be to choose a goal solid and then
to choose a convenient b and h so that such pyramids combine to form the
goal shape.

What is a convenient goal solid?

A convenient goal solid is suggested by the square pyra-
mid base – perhaps one face of a cube? If so, the cube
would be formed from six pyramids. To choose their b

and h, imagine how the pyramids fit into a cube. With
the base of each pyramid forming one face of the cube,
the tips of the pyramids point inward and meet in the
center of the cube. To make the tips meet, the pyramid’s
height must be b/2, and six of those pyramids make a
cube of side length b and volume b3.

To keep b and h integers, choose b = 2 and h = 1. Then six pyramids make
a cube with volume 8, and the volume of one pyramid is 4/3. Easy cases
have now excavated sufficient information to determine the dimensionless
constant: Since the volume of the pyramid is V ∼ hb2 and since hb2 = 4

for these pyramids, the missing constant must be 1/3. Therefore

V =
1

3
hb2.

Problem 2.9 Vertex location
The six pyramids do not make a cube unless each pyramid’s
top vertex is directly above the center of the base. So the
result V = hb2/3 might apply only in that special case. If
instead the top vertex is above one of the base vertices, what
is the volume?

Problem 2.10 Triangular base
Guess the volume of a pyramid with a triangular base.

2.3.3 Using the magic factor of one-third

The purpose of the preceding easy-cases analysis for an ordinary pyramid
was to decide between two candidates for the volume of a truncated pyra-
mid: V = h(a2 + b2)/2 and V = h(a + b)2/4. Unfortunately, neither
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candidate predicts the correct volume V = hb2/3 for an ordinary pyramid
(a = 0). Oh, no!

We need new candidates. One way to generate them is first to rewrite the
two families of candidates that passed the a = 0 and b = 0 tests:

V ∼ a2 + b2 = a2 + b2,

V ∼ (a + b)2 = a2 + 2ab + b2,

V ∼ (a − b)2 = a2 − 2ab + b2.

The expanded versions on the right have identical a2 and b2 terms but
differ in the ab term. This variation suggests an idea: that by choosing
the coefficient of ab, the volume might pass all easy-cases tests. Hence the
following three-part divide-and-conquer procedure:

1. Choose the coefficient of a2 to pass the b = 0 test.

2. Choose the coefficient of b2 to pass the a = 0 test. Choosing this coef-
ficient will not prejudice the already passed b = 0 test, because when
b = 0 the b2 term vanishes

3. Finally, choose the coefficient of ab to pass the a = b test. Choosing
this coefficient will not prejudice the already passed b = 0 and a = 0

tests, because in either case ab vanishes.

The result is a volume that passes the three easy-cases tests: a = 0, b = 0,
and a = b.

To pass the b = 0 test, the coefficient of a2 must be 1/3 – the result of
combining six pyramids into a cube. Similarly, to pass the a = 0 test, the
coefficient of b2 must also be 1/3. The resulting family of candidates is:

V =
1

3
h(a2 + nab + b2).

Among this family, one must pass the a = b test. When a = b, the candi-
dates predict

V =
2 + n

3
hb2.

When a = b, the truncated pyramid becomes a rectangular prism with
volume hb2, so the coefficient (2 + n)/3 should be 1. Therefore n = 1, and
the volume of the truncated pyramid is

V =
1

3
h(a2 + ab + b2).


