Commun. Math. Phys. 214, 249 — 286 (2000) Communications in
Mathematical
Physics
© Springer-Verlag 2000

On the Law of Addition of Random M atrices

L. Pastur!-2-* V. Vasilchuk?:3

1 Centre de Physique Théorique de CNRS, Luminy—case 907, 13288 Marseille, France.
E-mail: pastur@cpt.univ-mrs.fr

2 U.FR. de Mathématiques, Université Paris 7, 2, place Jussieu, 75251 Paris Cedex 05, France

3 Mathematical Division, Institute for Low Temperature Physics, 47, Lenin Ave., 310164, Kharkov, Ukraine.
E-mail: vasilchuk@ilt.kharkov.ua

Received: 27 October 1999/ Accepted: 22 March 2000

Abstract: Normalized eigenvalue counting measure of the sum of two Hermitian (or
real symmetric) matrices A,, and B,, rotated independently with respect to each other
by the random unitary (or orthogonal) Haar distributed matrix U, (i.e. A, + U;sB,U,)
is studied in the limit of large matrix order n. Convergence in probability to a limiting
nonrandom measure is established. A functional equation for the Stieltjes transform of
the limiting measure in terms of limiting eigenvalue measures of A, and B,, is obtained
and studied.

1. Introduction

The paper deals with the eigenvalue distribution of the sum of two n x n Hermitian or real
symmetric random matrices as n — oo. Namely we express the limiting normalized
counting measure of eigenvalues of the sum via the same measures of its two terms,
assuming that the latter exist and that terms are randomly rotated one with respect
another by an unitary or an orthogonal random matrix uniformly distributed over the
group U (n) or O (n) respectively.

One may mention several motivations of the problem. First, it can be regarded in the
context of the general problem to describe the eigenvalues of the sum of two matrices in
terms of eigenvalues of two terms of the sum. The latter problem dates back at least to
the paper of H. Weyl [33], and is related to a number of interesting questions of combina-
torics, geometry, algebra, etc. (see e.g. review [8] for recent results and references). The
problem is also of considerable interest for mathematical physics because of its evident
links with spectral theory and quantum mechanics (perturbation theory in particular).

It is clear that one cannot expect in general a simple and closed expression for
eigenvalues of the sum of two given matrices via eigenvalues of terms. Hence, it is
natural to look for a “generic” asymptotic answer, studying a randomized version of the
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problem in which at least one of the two terms is random and both behave rather regularly
as n — oo. Particular results of this type were given in [16,19] where it was proved
that under certain conditions the normalized eigenvalue counting measure of the sum
converges in probability to the nonrandom limit that can be found as a unique solution of a
certain functional equation, determined by the both term of the sum. Thus, a randomized
version of the problem admits a rather constructive and explicit solution in ceratin cases.
These results were developed in several directions (see e.g. [9]-{11] and the recent work
[21]). Similar problems arose recently in operator algebras studies, known now as the free
(non-commutative) probability (see [28,31,29] for results and references). In particular,
the notion of the R-transform and the free convolution of measures were introduced by
Voiculescu and allowed the limiting eigenvalue distributions of the sum to be given in
a rather general and simple form. From the point of view of the random matrix theory
the problem that we are going to consider is a version of the problem of the deformation
(see e.g. [7] for this term) of a given random matrix (that can be a non-random matrix
in particular) by another random matrix in the case when “randomness” of the latter
includes as an independent part the random choice of the basis in which this matrix is
diagonal. We will discuss this topic in more detail in Sect. 2.

In this paper we present a simple method of deriving functional equations for the
limiting eigenvalue distribution in a rather general situation. The method is based on
certain differential identities for expectations of smooth matrix functions with respect
to the normalized Haar measure of U (n) (or O (n)) and on elementary matrix identities,
the resolvent identity first of all. The basic idea is the same as in [16, 19]: to study not the
moments of the counting measure, as it was proposed in the pioneering paper by Wigner
[34], but rather its Stieltjes (called also the Cauchy or the Borel) transform, playing the
role of an appropriate generating (or characteristic) function of the moments. However,
the technical implementation of the idea in this paper is different and simpler than in
[16,19] (see Remark 1 after Theorem 2.1).

The paper is organized as follows. In Sect. 2 we present and discuss our main results
(Theorem 2.1). In Sect. 3 we prove Theorems 3.1 and 3.2 giving the solution of the
problem under the conditions of the uniform in n boundedness of the fourth moments
of the normalized counting measure of the terms. These conditions are more restrictive
than those for our principal result, given in Theorem 2.1. Their advantage is that they
allow us to use the main ingredients of our approach in more transparent form, free of
technicalities. In Sect. 4 we prove Theorem 2.1, whose main condition is the uniform
boundedness of the first absolute moment of the normalized counting measure of one
of the two terms of the sum. In Sect. 5 we study certain properties of solutions of the
functional equation and of the limiting counting measure. In Sect. 6 we discuss topics
related to our main result and our technique.

2. Model and Main Result

We consider the ensemble of n-dimensional Hermitian (or real symmetric) random
matrices H,, of the form

Hn = Hl,n + H2,n, (21)
where

Hl,n = Vn*AnVna H2,n = Un*BnUn-



On the Law of Addition of Random Matrices 251

We assume that A,, and B,, are random Hermitian (or real symmetric) matrices having
arbitrary distributions, V,, and U,, areunitary (or orthogonal) random matricesuniformly
distributed over the unitary group U (n) (or over the orthogonal group O (n)) with respect
to the Haar measure, and A,,, B,,, V, and U,, are mutually independent. For the sake of
definiteness we will restrict ourselves to the case of Hermitian matrices and the group
U (n) respectively. The results for symmetric matrices and for the group O (n) have the
same form, although their proof is more involved technically (see Sect. 6).

We areinterested in the asymptotic behavior asn — oo of the normalized eigenvalue
counting measure (NCM) N, of the ensemble (2.1), defined for any Borel set A C R
by the formula

N, Oy = A €A}

(2.2)
whereA;,i =1, ..., n aretheeigenvalues of H,.

The problem was studied recently in [31,26,30] in the context of free (non-commu-
tative) probability. In particular, it follows from results of [26] that if the matrices A,
and B, are non-random, their norms are uniformly bounded in n, i.e. their NCM Ny ,
and N2, have uniformly in n compact supports, and if these measures have weak limits
asn — oo,

N1, — N1, N2, — N, (2.3)

then the NCM (2.2) of random matrix (2.1) converges weakly with probability 1 to a
non-random measure N. Besides, if

% N(da
f@) =/ ( ), Imz > 0, (2.4)
oo A —Z
isthe Stidtjes transform of this limiting measure and
N, (dar
fr(Z):/ )\.(—Z), 7":1,2, (25)

arethe Stieltjestransformsof N,, r = 1, 2 of (2.3), thenaccordingto[18] f (z) satisfies
the functional equation

f@) = filz+ Ra(f(2))), (2.6)
where Ro(f) isdefined by the relation
1
- _ — R 2.7
b4 5@ 2(f2(2))) (2.7)

and is known as the R-transform of the measure N> of (2.3) (see Remark 3 after Theo-
rem2.1and[31,29] for the definition and properties of thistransform taking into account
that our definition (2.7) differsfrom that of [31] by the sign). The proof of thisresult in
[26,18] was based on the asymptotic analysis of the expectations m,((”) of moments of

measure (2.2). Since, according to the spectral theorem and the definition (2.2),

m™ =M}, M" =nTrH, (2.8)
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one can study the averaged momentSm,((") by computing asymptotically the expectations
of thedivided by n traces of the powersof (2.1), i.e. of corresponding multiplesums. This
direct method dates back to the classic paper by Wigner [34] and requiresaconsiderable

amount of combinatorial analysis, existence of all moments measures N{”z) and their
rather regular behavior asn — oo to obtain the convergence of expectations (2.8) for
all integer k£ and to guarantee that limiting moments determine uniquely corresponding
measure. By using this method it was proved in [26, 18] that the expectation of N,, con-

verges to the limit, determined by (2.6)~(2.7) and in [26] that the variance Var (M} =
E{(M")2} — E2{M"} admits the bound

Ci

Var{M™y < =%
{ k }_nz

(2.9)
where Cy, isindependent of »n. This bound yields evidently the convergence of all mo-
ments with probability 1, thereby the weak convergence with probability 1 of random
measures (2.2) to the non-random limit, determined by (2.6), (2.7). The convergence
with probability 1 here and below is understood as that in the natural probability space

Q=]]%m. (2.10)

where Q,, is the probability space of matrices (2.1), that is the product of respective
spaces of A,, and B,, and two copies of the group U (n) for U, and V,,.

In this paper we obtain the analogous result under weaker assumptions and by using
amethod that does not involve combinatorics. Thisisbecause wework with the Stieltjes
transforms of measures (2.2) and (2.3) and derive directly the functional equations for
their limits and the bound analogous to (2.9) for the rate of their convergence (rather
well known in random matrix theory, seee.g. [23,11]) by using certain simpleidentities
for expectations of matrix functions with respect to the Haar measure (Proposition 3.2
below) and elementary facts on resolvents of Hermitian matrices.

The Stieltjes transform was first used in studies of the eigenvalue distribution of
random matrices in paper [16] and proved to be an efficient tool in the field (see e.g.
[9-14,19-21,24,25]). We list the properties of the Stieltjes transform that we will need
below (see e.g.[1]).

Proposition 2.1. Let m be a non-negative and normalized to unity measure and

s(z)zfm(d)‘), Im z #0 (2.11)
A—Z

be the Stieltjes transform of m (here and below integrals without limits denote the
integrals over the whole axis). Then:

(i) s(z)isanalyticinC\ R and
Is(2)| < |Im z| ™4 (2.12)

(i1)
Im s(z)Im z >0, Im z # 0; (213)
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(iii)
ylijgo yls@y)l =1 (2.14)

(iv) for any continuous function ¢ with compact support we have the inversion (Frobe-
nius—Perron) formula

/¢>(A)N(dk) — Iir%%/mk)lm s +ig); (2.15)

(v) conversely, any function verifying (2.12)—(2.14) is the Stieltjes transform of a non-
negative and normalized to unity measure and this one-to-one correspondence be-
tween measures and their Stieltjes transforms is continuous if one will use the
topology of weak convergence for measures and the topology of convergence on
compact sets of C \ R for their Stieltjes transforms.

We formulate now our main result. Since eigenvalues of a Hermitian matrix are
unitary invariant we can replace matrices (2.1) by

H, = A, + U*B,U,, (2.16)

where A,,, B, and U,, arethesameasin (2.1). However, it is useful to keep in mind that
the problem is symmetricin A, and B,,. We prove

Theorem 2.1. Let H, be the random n x n matrix of the form (2.1). Assume that the
normalized eigenvalue counting measures N, ,, r = 1, 2of matrices A, and B,, converge
weakly in probability as n — oo to the non-random nonnegative and normalized to 1
measures N,, r = 1, 2 respectively and that

sup/ IAEN], (d)) = my < oo, (2.17)
n
where N;’jn is one of the measures N1, or N2 ,. Then the normalized eigenvalue counting

measure N,,of H,, converges in probability to a non-random nonnegative and normalized
to 1 measure N whose Stieltjes transform (2.4) is a unique solution of the system

_ _A22)
f(Z)—f1<z f(z))’
. _A1(®)
(@)= f2 (Z @ ) , (2.18)

1-A1(z) — A2(2)

f2) =

in the class of functions f(z) satisfying (2.12)—(2.14) and functions A,(z),r = 1,2
analytic for Im z # 0 and satisfying conditions

A12(z) > 0aslm z — oo, (2.19)

where f.(z),r = 1, 2 are Stieltjes transforms (2.5) of the measures N,,r = 1,2 and
E{-} denotes the expectation with respect to the probability measure, generated by A,,,
B,, U, and V,,.
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The theorem will be proved in Sect. 4. Here we make several remarks related to the
theorem (see also Sect. 5).

Remark 1. The historically first example of arandom matrix ensemble representablein
the form (2.16) was proposed in [16] and has the form

m
Hyp=Hon+ Y TPy, (2.20)
i=1

where Hop , isanon-random n x n Hermitian matrix such that its normalized eigenvalue
counting measure convergesweakly to alimiting non-negative and normalized to 1 mea-
sure No, 7;,i = 1,..., m arei.i.d. random variablesand P,, are orthogonal projections
onunitvectorsg;,i =1, ..., m, that areindependent of one another and of {;}!" ;, and

uniformly distributed over the unit spherein C* 1. It is clear that the matrix

m
> up, (2.21)
i=1

can be written in the form U, B, U, of the second term of (2.1) or (2.16). According
to [16] the NCM of the random matrix (2.21) converges in probability asn — oo,
m — oo, m/n — ¢ > 0to anon-random nonnegative and normalized to 1 measure
whose Stieltjes transform £y, p (z) satisfies the equation

(. o (dt) -1
fmp(z) = (z c / —1+TfMP(Z)> , (2.22)

where o isthe probability law of z; in (2.20). Assumethat o has the finite first moment

/|‘L’|O‘(d‘[) < Q. (2.23)

Then taking (2.21) as the second term of (2.1) we get, in view of inequality
E {f |A|N2,n<dx>} <n 'S Eflul) = ZE(l) < oo,
i=1 "

the condition (2.17) of Theorem 2.1. Applying then Theorem 2.1 inwhich f>(z) isgiven
by (2.22), we obtain from the two last equations of the system (2.18) that

ne _, | ro (dr)
f@ 1+ tfup(z)

This and the first equation of (2.18) yield the functional equation for the Stieltjes trans-
form of the limiting eigenvalue distribution of ensemble (2.20)

d
@ = fo <z —c/ %) (2.24)

1 In fact, in [16] a more general class of independent random vectors was considered, but we restrict
ourselves here to the unit vectors, in order to have an example of an ensemble of form (2.1).
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where fo(z) isthe Stieltjestransform of thelimiting NCM Ny of the non-random matrix
Ho,,. Thisequation was obtained in [16] by another method, whose main ingredient was
careful analysis of changes of the resolvent of matrices (2.20) induced by addition of
the (m + 1)th term, i.e. by a rank-one perturbation. This alowed the authors to prove
that the sequence g; ,(z) = n  Tr(H;, —z)~%, i = 1,..., m convergesin probability
to the non-random limit f(z,t), z € C\R, t € [0,1],asn — oco,m — 00,1 —
oo, m/n — ¢, i/m — t, and that the limiting function f (z, t) satisfies the quasilinear
PDE,

af t(t) of

5 +C1+r(t)fa_z’ f(z,0) = fo(2), (2.25)

where 7(¢) is the inverse of the probability distribution o(r) = P{r; < t}. It can
be shown that the solution of (2.25) at + = 1 coincides with (2.20) [16]. Equation
(2.25) with t(r) = const isaparticular case of the so-called complex Burgers equation
which appeared in free probability [31], where the random matrices (2.20) provide an
analytic model for the stationary processeswith freeincrements, like in the conventional
probability the heat equation and sums of i.i.d. random variables comprise an important
ingredient of the theory of random processes with independent increments.

Remark 2. Consider the ensemble known as the deformed Gaussian ensemble [19]:
H, = HO,n + My, (226)

where Hp , is anon-random matrix such that its normalized eigenvalue counting mea-
sure converges weakly to the limit No and M,, = {Mjk};! r—1 IS arandom Hermitian
matrix whose matrix elements M ;; are complex Gaussian random variables satisfying
conditions:

_ - 2w?
M, = My, E{M i} =0, E{M jjj; M ji,} = 78j1j26k1k2' (2.27)

In other words, the ensemble is defined by the distribution

P(dM) = Z; texp {—%TrMZ} dMm, (2.29)
w

n
aM = l_[dej 1_[ dReMjkdImMjk,
j=1 1<j<k=n
where Z,, is the normalization constant. The distribution defines the Gaussian Unitary

Ensemble (GUE) [17]. Thisiswhy ensemble (2.26) is called the deformed GUE [7]. It
isknown [17] that M,, can be written in the form

M, = U*A,U,, (2.29)

whereU,, areunitary matriceswhoseprobability law istheHaar measureon U (n) and A,
isindependent of the U,, diagonal random matrix whose normalized eigenval ue counting
measure convergeswith probability 1 tothesemicirclelaw. The Stieltjestransform f.(z)
of the latter satisfies the ssmple functional equation [19]

fse(@) = —(z + 2w? fie(2)), (2.30)
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whose solution yields the semicircle law by Wigner

Nse(dh) = (4rw®) ™ V8w? — 12X, /1, 2 /2 (WA, (2.31)
where (4.1 (1) istheindicator of theinterval [a, b] C R. Itiseasy to seethat
E{n 1TrM?} = 2u? < .

Denoting by Ny, the NCM of the random matrices defined by (2.28) we can rewrite
thisinequality in the form

o
f A2E{Nyc.n(d1)} < oo. (2.32)
—0

Thus, if we use (2.29) as the second term in (2.16), it will satisfy condition (2.1). Tak-
ing fsc(z) as f2(z) in (2.18) we find from the two last equations of the system that
A2(2)/f(z) = —2w? f (z) and then the first equation of (2.18) takes the form

f(z) = folz + 2w?f(2)). (2.33)

where fo(z) isthe Stieltjestransform of the limiting counting measure of matrices Ho ,, .
Thisfunctional equation determining thelimiting eigenval uedistribution of thedeformed
GUE was found by another method in [19] (see also [12]) for random matrices (2.26)
in which M,, has independent (modulo the Hermitian symmetry conditions) entries, for
(2.28) in particular.

Remark 3. Consider now a probability measure m (dA) and assume that its second mo-
ment m» is finite. In this case we can write the Stieltjes transform s(z) of m in the
form

s(2) = —(z+ @),

where X (z) isthe Stieltjes transform of a non-negative measure whose total massismy
(to prove this fact one can use, for example, the general integral representation [1] for
functions satisfying (2.13) ). Since s’(z) = z~2(1+ o(1)), z — oo, then, according to
the local inversion theorem, there exists a unique functional inverse z(s) of s(z) defined
and analytic in a neighborhood of zero and assuming its values in a neighborhood of
infinity. Denote

X (z(s)) = Ru(s) (2.34)

and following Voiculescu [31] call R, (s) the R-transform of the probability measurem.
By using the R-transforms R » of measures N1 » we can rewrite the first two equations
of system (2.18) in the form

A1 1

—~ = +tz+ R1(f(2) = —R(f(2)) + R2,1(f (2)), (2.35)

f@  fQ@
where R denotes the R-transform of the limiting normalized counting measure N of the
ensemble (2.1) (the measure whose Stieltjes transform is f). These relations and the
third equation of system (2.18) lead to the remarkably simple expression of R via Ry
and R,

R(f) = R1(f) + Ra(f), (2.36)
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that “linearizes” the rather complex system (2.18). The relation was obtained by Voicu-
lescu in the context of C*-algebra studies (see [31,29] for results and references). Thus,
one can regard the system (2.18) as a version of the binary operation on measures defined
by (2.36) and known as the non-commutative convolution. A simple precursor of relation
(2.36) containing the functional inverses of f and fj » for real z lying outside of the
support of Ng in (2.24) was used in [16] (see also [25]) to locate the support of N
in terms of the support of Ny in the case of ensemble (2.20). The simplest form of the
relation (2.36) for the case when both measures are semicircle measures (2.31), i.e. when
Rip = Zwizf, was indicated in [19]. Formal derivation of relation (2.36) for the case
when the both matrices H1 and H; are distributed according to the laws

P (dH) = Z{")exp{—nV1,(H)}, dH, 2.37)

where Vi, : R — R, are polynomials of an even degree was given in [36]. The
derivation is based on the perturbation theory with respect to the non-quadratic part
of V12 and the R-transform is related to the sum of irreducible diagrams of the formal
perturbation series. Existence of the limiting eigenvalue counting measure for the random
matrix ensemble (2.37) was rigorously proved in [6] for a rather broad class of functions
V (not necessarily polynomials). It was also proved that the normalized counting measure
(2.2) converges in probability to the limiting measure. The form (2.29) of matrices of
ensemble (2.37) can be deduced from known results on the ensemble (2.37) (see e.g.[5])
in the same way as for the GUE (2.28), where V (1) = A2/4w? (see [17]). Condition
(2.17) follows from results of [6,21]. Thus we can apply Theorem 2.1 to obtain rigorously
relation (2.36) in the case when matrices H,, r = 1, 2 in (2.1) are distributed according
to (2.37).

Remark 4. The problem of addition of random Hermitian (real symmetric) matrices
has natural multiplicative analogues in the case of positive defnite Hermitian (real
symmetric) or unitary (orthogonal) matrices. Namely, assuming that A, and B, are
positive definite matrices and U,, is the unitary (orthogonal) Haar distributed random
matrix we can consider the positive defnite random matrix

H, = AY?U*B, U, AY?. (2.38)
Likewise, if S,, and T, are unitary (orthogonal) matrices and U,, is as above we can
consider the random unitary matrices

Vp = S,U*T, U, (2.39)

In latter case the normalized eigenvalue counting measure is defined as n~! times the
number of eigenvalues belonging to a Borel set of the unit circle.

In both cases (2.38) and (2.39) one can study the limiting properties of the NCM’s of
respective random matrices provided that the “input” matrices A,, B,,, S, and 7, have
limiting eigenvalue distributions. The frst examples of ensembles of the above forms
as multiplicative analogues of the ensemble (2.20) were proposed in [16], where the
respective functional equations analogous to (2.24) were derived. A general class of
the random matrix ensembles of these forms was studied in free probability [28,31,2],
where the notions of the S-transform and the free multiplicative convolution of measures
were proposed and used to give a general form of the limiting eigenvalue distributions of
products (2.38) and (2.39). It will be shown in the subsequent paper [27] that a version
of the method of this paper leads to results analogous to those given in Theorem 2.1
above.
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3. Convergence with Probability 1 for Non-Random A,, and B,

Asthefirst step of the proof of Theorem 2.1 we prove the following

Theorem 3.1. Let H, be the random n x n matrix of the form (2.1) in which A, and
B, are non-random Hermitian matrices, U, and V,, are random independent unitary
matrices distributed each according to the normalized to 1 Haar measure on U (n).
Assume that the normalized counting measures N, ,,r = 1, 2 of matrices A, and B,
converge weakly as n — oo to nonnegative and normalized to 1 measures N,,r =1, 2
respectively and that

sup / AN, (dA) = mg < 00, r =1, 2. (3.1)

Then the normalized eigenvalue counting measure (2.2) of H, converges with probability
1 to a non-random and normalized to 1 measure whose Stieltjes transform (2.4) is a
unique solution of the system (2.18) in the class of functions f(z), A,(z),r = 1,2
analytic for Im z # 0 and satisfying conditions (2.12)—«2.14) and (2.19) respectively.

Remark 1. The theorem generalizes the results of [26] proved under the condition that
supports of the NCM N, ,,, r = 1, 2 of A, and B,, are uniformly bounded in n.

Remark 2. By mimicking the proof of the Glivenko—Cantelli theorem (seee.g. [15]), one
can provethat the random distribution functions N,, (1) = N,,(] — oo, A[) corresponding
to measures (2.2) converge uniformly with probability 1 to the distribution function
N(A) = N(] — oo, A[) corresponding to measure N

P{lim sup|N,(A,) — N(1)| =0} = 1L
n—)OO)LGR

We present now our technical means. Firstisacollection of el ementary factsof linear
algebra.

Proposition 3.1. Let M, be the algebra of linear transformations of C" in itself (n x n
complex matrices) equipped with the norm, induced by the Euclidean norm of C".
We have :

(i) ifMeM,and {Mjk}’}’kzl is the matrix of M in any orthonormalized basis of C",
then

|Mji| < |IM]]; (32
(i) if TrM = Y M;;, then

j=1
ITrMyMa| < (TrMaM$)Y2(TrMaM3) Y2, (33

where M* is the Hermitian conjugate of M, and if P is a positive definite transfor-
mation, then

ITrMP| < ||[M||TrP; (3.4)
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(iii) for any Hermitian transformation M its resolvent
G =WM-2t (3.5)
is defined for all non-real z, Im z # 0,
IG@II < lIm 2|~ (36)

and if {ij(z)}’}.’k:1 is the matrix of G(z) in any orthonormalized basis of C" then

G jx(2)] < |Im 2|74 (3.7)

(iv) if My and M> are two Hermitian transformations and G,(z), r = 1, 2 are their
resolvents, then

G2(z) = G1(z) — G1(2)(M2 — M1)G2(z2) (3.8)

(the resolvent identity);
(v) if G(z) = (M — z)~Lis regarded as a function of M, then the derivative G'(z) of
G (z) with respect to M verifies the relation

G'()-X=-G@XG(2) (3.9
for any Hermitian X € M,,, and, in particular,
1G'@I < IG@IIP < lIm z]72. (3.10)
Hereis our main technical tool.

Proposition 3.2. Let ® : M,, — C be a continuously differentiable function. Then the
following relation holds for any M € M,, and any Hermitian element X € M,,:

/ S (U*MU) - [X,U*MU]dU = 0, (3.11)
U(n)
where
[M1, M2] = MiM2 — M1M> (312
is the commutator of M1 and M> and the symbol
/ ...dU (3.13)
U(n)

denotes integration over U (n) with respect to the normalized Haar measure dU.

Proof. To prove (3.11) we use the right shift invariance of the Haar measure: dU =
d(UUp), YUg € U (n) according to which the integral
/ ® (e_iSXU*MUeig)() duU
Un)

isindependent of ¢ for any Hermitian X € M,,. Thus its derivative with respect to ¢ at
¢ = 0iszero. Thisderivativeisthel.h.s. of (3.11). O
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Proposition 3.3. System (2.18) has a unigue solution in the class of functions f(z),
A1,2(z) analytic for Im z # 0 and satisfying conditions (2.12)—2.14) and (2.19).

Proof. Assume that there exist two solutions (f, LAy and (f7, Ay ) of the system.

Denote §f = f — f, SA12 = A12 12 Then, by using (2.18) and the integral
representation (2.5) for f1 », we obtain the linear system for 6¢ = z8f, and for §A1 2,

3¢ (1 —ai(z)) +b1(z2)8A1 =0,
8¢ (1 —az(z)) + b2(z)6A2 =0, (3.14)
8¢ — A1 — A =0,

where
“= f,, —— 1, b1 = F 2 b, I =Dz — Ayf 2 — Ay/f, (3.15)
ron NZ(d)\)
I = 3.16
2(z', 2" f(k—z’)(k—z/’)’ (3.16)

and az, b can be obtained from a; and b1 by replacing N» and A; by Ny and Az inthe
above formulas. For any yg > 0 consider the domain

E(yo) ={z€C:|Im z| > yo, |Re z|] < [Im z]}. (3.17)
If s(z) is the Stieltjes transform (2.11) of a probability measure m, then we have for
z € E(yo),
‘f :‘ / / <—+2/ m(dAr),
Al=M  |A>M [A|>M
i.e
z5(z) = =1+ 0(1), z = o0, z € E(yp). (3.18)

Analogously, by using this asymptotic relation and condition (2.19) we obtain that for
z = 00,z € E(yo),

212(2) = 1+ 0(D), a12(z) = o(1), b12(z) = =1+ o(1).

Thusthe determinant b1b2 + b1 + b2 — (az2b1 + a1b2) of system (3.14) is equal asymp-
totically to —1. We conclude that if yg in (3.17) is big enough, then system (3.14) has
only atrivial solution, i.e. system (2.18) isuniquely soluble. O

In what follows we use the notation

/...dU:(...). (3.19)
U(n)
Proof of Theorem 3.1. Because of unitary invariance of eigenvalues of Hermitian matri-

ces we can assume without loss of generality that the unitary matrix V in (2.1) is set to
unity, i.e. we can work with the random matrix (2.16). We will omit below the subindex
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n in al cases when it will not lead to confusion. Write the resolvent identity (3.8) for
the pair (H1, H) of (2.1):
G(2) = G1(2) — G1(2) H2G (2), (3.20)
where
G(@) = (Hi+H—2) 7", Gi(a) = (Hi—2) .

Consider the matrix (g, (z)G(z)), where

N”(dk), Im z #0 (3.21)
—Z

&n(2) = ETrG(Z) = /
n A

isthe Stieltjes transform of random measure (2.2). The resolvent identity (3.20) leadsto
the relation

(8n(2)G(2)) = (gn(2))G1(z) — G1(2){(gn(z2) H2G (2)). (3.22)

By using Proposition 3.2 with the matrix element ((Hy+ M —2)~1)  as ®(M) we
have in view of (3.9) and (3.11), (3.12),

((G[X, H2]G)q4c) = 0.

Choosing the Hermitian matrix X with only (a, b)th and (b, a)th non-zero entries, we
obtain

<Gaa (HZG)bc> = <(GH2)aaGbc>- (323)

Applying to this relation the operation n~1 3~ and taking into account the definition
a=1
(3.21) of g,,(z) we rewrite the last relation in the form

(8n(2) H2G (2)) = (82,1 (2) G (2)),

where
d2.0(2) = %TerG(Z). (3.24)
Thus we can rewrite (3.22) as
(8n(2)G(2)) = (8n(2))G1(2) — G1(2)(82.1(2)G(2))- (3.25)
Introduce now the centralized quantities
g;(Z) = gn(Z) - fn(Z)’ 8(23’,1(2) = 82,}1(1) - AZ,n(Z)a (326)
where
Jn(2) = (gn(2)), A2n(2) = (82,0(2))- (3.27)

With these notations (3.25) becomes

n(@)(G(2) = fu(2)G1(2) — A2, (2)G1(2)(G(2)) + R1,n(2), (3.28)
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where
R11(2) = —(2,(2)G(2)) — G1(2)(83,,(2) G (2))- (3.29)
Besides, since

n~ITrH? = n=1Tr(Hy 4+ Hy)? < 2n Y TrH? + 207 1TrH2

3.30
- 2/ A2N1,(dr) + 2/,\2N2,n(dx) < 4my < 4my?, (3:30)
we have
p2 = sup(n 1TrH?) = sup/ W2N,(dA) < dmy < 4my/? < oo, (3.31)
Thus
N, (dd) 1
gn(2) = . =——+2s2),
—Z Z
where
N RO ACS
8n(2) = (h—2)z .

In view of (3.31)
280 (2)| < [Im Zl_lf AN (d2) < [Im 2]t

i.e. the asymptotic relation

851(2)=—Z(1+0( = >),Imz—>oo (3.32)
[Im z|

holds uniformly in n. We have a so the simple bound

lgn(2)| < [Imz] ™t (3.33)

following from (3.4) and (3.7) and, in addition, according to Proposition 3.1 and (3.24),
the bounds

182.0(2)] < my*|imz| 2, (3.349)
282.,(2) = n ITrHozG (z) = n Y TrHa (=14 HG(2)). (3.35)
Hence, in view of (3.31),
2820 ()| < (0T HHYZ + (0 T HYHY2(n T H?G (2) G*(2) M2

1/4 1/2

(3.36)
<my " +2m,"/yo,

I.e. 282, (z) isuniformly bounded in n.
As aresult of the above bounds we have for |Im z| > yg uniformly in n,

1
182,4(2) f H(2)G1(2)]| = O (%> . Yo —> 00,
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i.e. the matrix 1 — Az,n(z)fn_l(z)Gl(z) is invertible uniformly in » and there is yg
independent of » and such that for |Im z| > yo,

L+ Az £ H2)G1@) 7Y < 2. (3.37)
Thus (3.28) is equivalent to

(G(@) = (14 A2, (2) £, 1(2)G1(2) "1G1(2)
(L4 A2, () 1@ G1(2) @) R (2)

or to
(G) =61 (2= A2n@ ;D)) + A+ 224 () £ DG T D Run(2).
Applying to this relation the operation »~1Tr we obtain

fn(@) = fin@ — A2n@ £7H2) 4 r1a(2), (3.38)
where

Nl,n(d)\)

fin(@) =n"1TrG1(z) =
A—2Z

(3.39)

isthe Stieltjes transform of the normalized counting measure of Hy , in (2.1) and

ria(@) =n T+ A2 (2) £ H2)G1@) L L@ R (), (3.40)

where R1 ,(z) isdefined in (3.29). We show in the next Theorem 3.2 that there exists a
sufficiently big yo > Oand C(yp) > 0, bothindependent of » and suchthatif z € E(yp),
where E (yo) isdefined in (3.17), then the variances

v1(2) = (g (D)%), v2(2) = (185, (1) (3.41)
admit the bounds
C C
v1(2) = :LyZO), v2(2) < r(LyZO)- (342)

These bounds, Proposition 3.1, (3.37), and the Schwartz inequality for the expectation
(...) imply that uniformly inn andin z € E(yo),

2 1/2
()] < W(H e O£ 20 M TG ()G () ) Y2,

Inview of (3.27), (3.32) and theidentity zG(z) = —1+ HG(z) we have
@6 @) = —z(1+ 0(yg NG = L+ 0(yg (L — HG(2)),
and since, by (3.3), (3.4) and (3.30),

(n"TrHG(2))] < yo HnTrH?)
<2mi*y5t 1(n M TrH?G (2)G* ()] < 4my %52,
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we obtain that for z € E(yo),

ria(e)] < 209 (3.43)
n

where C1(yo) isindependent of » and isbounded in yyg.

Furthermore, thebounds (3.33) and (3.34) imply that sequences{ f,, (z)} and {A2 , (z)}
are analytic and uniformly in n bounded for |Im z| > yo > 0. Thus the sequences are
compact with respect to uniform convergence on compacts of the domain

D(yo) ={z € C:|Im z| > yo > 0}. (3.44)

In addition, according to the hypothesis of the theorem, the normalized counting
measures N1, of matrices Hy , converge weakly to alimiting probability measure Nj.
Hence, their Stieltjestransforms (3.39) converge uniformly on compacts of (3.44) to the
Stieltjes transform f1 of N1. Hence, if yo > 0 islarge enough, there exist two analytic
in (3.44) functions f and A verifying the relation

_Aa(z)
f(@)

Thisisthefirst equation of system (2.18). The second equation of the system follows
from the argument above in which the roles H, and H> are interchanged, in particular
the quantity (n~1TrH1G(z)) is denoted A1 ,(z). Asfor the third equation, it is just the
limiting form of the identity

f(Z)=f1(Z ) [Im z| > yo.

(n"Tr(Hy, + H2, — 2)G(2)) = 1. (3.45)

Thus, wehavederived system (2.18). Itsuniquesolubility indomain (3.17) where yg is
large enough is proved in Proposition 3.3. Besides, all threefunctions f,,, A, r = 1,2
defined in (3.27) areapriori analytic for [Im z| > 0. Hence, their limits f, A,,r = 1,2
arealso analyticfor non-real z. In view of theweak compactness of probability measures
and the continuity of the one-to-one correspondence between nonnegative measures and
their Stieltjes transforms (see Prop. 2.1(v)) there exists a unigue nonnegative measure
N such that f admit the representation (2.4). The measure N is a probability measure
inview of (3.32) and.(2.14).

We conclude that the whole sequence { f,,} of expectations (3.27) of the Stieltjes
transforms g, (3.21) of measures (2.2) converges uniformly on compacts of D(yop),
where D(yp) isdefinedin (3.44), to the limiting function f verifying (2.18). Thisresult,
Theorem 3.2 and the Borel—Cantelli lemma imply that the sequence {g, (z)} converges
with probability 1to f(z) for any fixed z € D(yg). Sincethe convergence of a sequence
of analytic functions on any countable set having an accumulation point intheir common
domain of definition implies the uniform convergence of the sequence on any compact
of the domain, we obtain the convergence g, to f with probability 1 on any compact of
D(yp). Dueto the continuity of the one-to-one correspondence between probability mea-
suresand their Stieltjestransforms (see Prop.2.1(v)) the normalized eigenval ue counting
measure (2.2) of the eigenvalues of random matrix (2.1) converge weakly with prob-
ability 1 to the nonrandom measure N whose Stieltjes transform (2.4) satisfies (2.18).
|
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Theorem 3.2. Let H,, be the random matrix of the form (2.1) satisfying the condition of
Theorem 3.1. Denote

gn(@) =n"Tr(Hy — )%, 80 (@ =n ' TrHu(Hy, —2)"Lr =12 (3.46)

Then there exist yo and C(yp), both positive and independent of » and such that the
variances of random variables (3.46) admit the bounds for |[Im z| > yo,

C(yo)

(181 (2) — (gn(2))?) < et (3.47)
C
(18n(2) = (8rn(2)?) < fff), r=12, (349)

if z € E(yo), where E(yp) is defined in (3.17).

Proof. Because of the symmetry of the problem with respect to H1 and Hz in (2.1) it
suffices to prove (3.48) for, say, §2.,(z). Besides, we will use below the notations g(z)
and §(z) for g,(z) and 82, (z) and the notations 1 and 2 for two values z1 and z; of the
complex spectral parameter z. We assume that |Im z1.2| > yo > O.
We will use the same approach asin the proof of Theorem 3.1, i.e. we will deriveand
study certain relations obtained by using Proposition 3.2 and the resolvent identity.
Consider the matrix

V1= (g°(DG(2)), (3.49)

where g°(1) = g(1) — (g(1)). It is clear that n=1TrVy for z1 = z and zo = Z isthe
variance (3.47) that we denoted by v1(z) in (3.41):

(18°@)1%) = n" TVl oz = v1(2). (3.50)
In view of the resolvent identity (3.20) for the pair (H1, H) we have

Vi=-G1(2Q)W, (3.51)
W = (g°(DH2G(2). (3.52)

Applying Proposition 3.2 to the function
(M) = Guy (VMG (2))ca,
where G(z) = (H1 + M — z)~%, and
G°(z) = G(z) — (G(2))

=H+M —Z)_l—/ (H1+U*BU —Z)_ldU,
Un)

we obtain therelation

— ((GDIX, H2lG(D)aa(H2G (2))ca) + (G oy (DX, H21G(2))ca)
— (G (D(H2G (DX, H21G(2)ca) = O,
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wherethe operation .. ., ... ] isdefined in (3.12). Choosing as X the Hermitian matrix
having only the (¢, j)! and (j, ¢) non-zero entries, we obtain from the above relation
the following one:

—(Gac(D(H2G (1)) ja(H2G (D)) ca) + ((G(D H2)ac G ja (1) (H2G (2))ca)
H(Gaa(Ddec (H2G (2)) ja) — (G o (D (H2) G ja(2))
—(Goa (D (H2G(2))cc(H2G(2)) ja) + (G o (D)(H2G (2) H2) e G ja (2)) = 0.

Applying to this relation the operation » =1 Y and taking into account that

g°=n"t) Go
we have
n~4(G*(1), H2lH2G(2) + (° (D H2G(2))
+ (8°(Dk(DG(2) — (g°(DS(QH2G(2)) =0, (3.53)
where
k(z) =n"'TrK(z), K(z) = BGy(2)B — B, Gy(z) =UG()U*. (3.54)
Introducing the centralized quantity (cf. (3.26))
k° =k — (k), (3.55)
and using our notations (3.24) and (3.27), we can rewrite (3.53) as
(11— AQ)YW = —(k(2))V1 + R, (3.56)
where
R = (g°(DS°(QH2G(2)) — (¢° (VL (DG () — T, (3.57)
and
T1 = n4{[G*(1), H2]H2G ().

In view of the uniform in » bound (3.36)), the function 1 — A(z) is uniformly in n
bounded away from zero. Thus we have from (3.51), (3.52) and (3.56),

v=(1- k@)A-A@)612) Q- A@)'G@R.  (359)
According to (3.54), (3.6) and (3.1), we have uniformly in n,

k)| < yg i TrB? + [n~'TrB| < ygimy? + my* < oo. (3.59)

Thisbound and the universal bound (3.6) imply that the matrix (1 — (k(z))(1— A(z)) ™1

G1(2)) isuniformly inn invertibleif [Im z| > yo and yo islarge enough, and hence the
matrix

1 -1 1
0=(1- (k@) A- 2@ !610)  A- A G
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admits the following bound for |Im z| > yo and sufficiently large yo:

C
ol < —, (3.60)
Y0

where C is an absolute constant.

Setting now in (3.58) z1 = z, z2 = z and applying to thisrelation the operation n =1 Tr
weobtaininthel.h.s. the variance v1(z) because of (3.50). Asfor ther.h.s., itsterms can
be estimated as follows in view of (3.57):

(i)
1(g°(D8°n " TrQHaG(2))| < asa(yo)vy' vy, (3.61)
where v2 isdefined in (3.41) and because, according to (3.1), (3.3), (3.6) and (3.60),
In"ITrQHG(2)| < (n 2 Tr* QY2 YTrHZG (2)G*(2))Y/? < 362
< Cyy%my™* = ar2(y):; '
(ii)
1(g° (WK n~ TrOG(2)] < a13(yo)vy vy, (3.63)
where
= (|k°(2)]?), (3.64)
because
nTroG )| < nTro* ) Y216 (2)G* (2))Y? (365)
< Cyp? = a13(yo); '
(iii)
In=STHQIGP(D)., HolH,G ()] < Cml2yg a2 = P00,
n
Thus we obtain the inequality
v1 < a12000)v1’ 2vg' % + a13(yo)vi’ “vg’? + % (3.66)

where «12, 13 and 81 are independent on » and vanish as yg — oo.
Now we are going to derive analogous inequalities for v> and v3 defined in (3.41)
and in (3.64) and to obtain the system

3
v; < Z aijvil/zv}/z + pi ()2)0), i=1,2 3. (3.67)
j=Li# "

To get the second inequality of the system we consider the matrix (cf. (3.49))
Vo = (8°(1) HoG (2)). (3.68)
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Applying to V> the operation »~1Tr and setting z1 = z, z» = Z, we obtain the variance
v2 of (3.42). On the other hand, using Proposition 3.2 for the function

(M) =(MG(1)) (MG (2))ca

we obtain, after performing in essence the same procedure as that used in the derivation
of (3.53), in particular, choosing the Hermitian matrix X with only the (¢, /) and
(j, o)1 non-zero entries,

v2 = —(g(2)8°(Dk(2)) + (8°(1)62(2)) — T2, (3.69)
where
T = (n3Tr((Gy (L), K(1)1BG(2)) (3.70)

and K (z), k(z) aredefined in (3.54). Using again centralized quantities (3.26) and (3.55),
we can write

(8(2)8°(Dk(2)) = (8°(2)8°(Dk(2)) + (8(2))(8°(DK°(2))

and

(8°(1)8%(2) = (8°(1)8°(2)8(2) + (8°(1)5°(2)) (8(2)).
Thus, in view of (3.33), (3.34), (3.59), and the Schwarz inequality we have the bounds

12 1/2 1/4

(8(2)30(1)k(2)) <, (1+m 1/4 _1

12, 1/2 —1
)+U O ’

and
(8°(1)6%(2)) < 2vamy *ygt.
14 1 _

These bounds and the analogously obtained bound for 7> in (3.70) lead for m}’ "y,
1/4 to the second inequality (3.67), in which

1/4 _ 14 _
a21(y0) = 4m4/ , as(yo) = 2y5 %, P2 = 8m4/ Yo 2 (3.71)

To obtain thethird inequality of (3.67) we may use the same scheme as above applied
to the matrix V3 = (k°(1)K (2)) (cf. (3.49) and (3.68)). However this requires rather
tedious computations and the existence of the uniformly bounded in n sixth moment mg
of the measure N, ,,. For this reason we consider the quantity

(n"ITr(BGy(1)B)°Gy (2)B), (3.72)

where Gy (z) isdefined in (3.54). As before we would like to obtain for this quantity a
certain relation, based on the invariance of the Haar measure with respect to the group
shifts. To this end we will introduce the following function of the unitary matrix U:

(BUG(L)U*B),,(UG(2)U*B)a,

where G(z) = (Hy + U*BU — z)~! and we will use the analogue of (3.11) obtained
from the left shift invariance of the Haar measure. This |leads to the relation (cf. (3.53)
and (3.69))

(k*(DHgK () + (k°(Dé(Gu(2)B) — (k*(HGuy(2B) — T3 =0, (3.73)
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where
T3=n"2(Gy(H)BK(L)Gy (2B — K()BGy(L)Gy(2)B).

We multiply (3.73) by B from the left and introduce again the centralized quantities g°,
8° and k° defined in (3.26) and (3.55). We obtain

(1-A@) - fB)(k° (DK (2))
= —(k°(D)g°(2QBK(2)) + (k°(1)6°(2)BGy (2)B) + BTs.
Inview of (3.32) and (3.36) theimaginary part of the function 1 — A(z) isuniformly in

n bounded away from zero if |Im z| islarge enough. Since B isaHermitian matrix, the
matrix

S=1-A@Q - f2B)* (3.74)

admits the bound

1-AQ) |t

f 2
By using (3.28) and (3.34) we find that for z € E(yg), where E(yp) is defined in

(3.17) with sufficiently big yo, we have the uniform in n inequality |f(2)Im(1 —
A@) )= 1/2 e

US|l =11 1@ -a@) @ -3 < 1@ im

S]] < 2. (3.75)

Thisleads to the relation
Vz3= (k°(DK(2) = —(k°(Dg°(2SBK(2))

(3.76)
1 (k°(1)8°(2)SBGy(2)B) + SBTs.

We apply to this relation the operation n~1Tr, set z1 = z, z2 = z and estimate the
contribution of the first two terms of the r.h.s. as (3.76) as above, using in addition
(3.75). We obtain

In"TrSBK (2)] < 4my'% = az1(y0),

1/2

(3.77)
In"ITrSBGy (2)B| < 4my “yy* = az(y0).

To estimate the third term of ther.h.s. of (3.76) we use the identity

SB=—ft2+@-A2)f s,

the asymptotic relations (3.32) and (3.34) and the bound (3.75). This yields the bound
|ISB|| < 4yo. By using this bound and the same reasoning as in obtai ning other bounds
above, we obtain

Cm
In A TrSBTs| < —5 o —ﬁg,
ygn? n

where C is an absolute constant.
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Let usintroduce new variables

1/2 1 1/2
w1 = yovy'%, up = vy'%, uz =v3'%. (3.78)

Then we obtain from (3.67) and (3.62), (3.65), (3.71), and (3.77) the system
Vi
I/tl-zf | Z .a,-juiuj—l—ﬁ, (3.79)

inwhichthecoefficients{a;;, i # j} havetheforma;; = yg *b;;, whereb;; arebounded
inygandinn asyg — oo andn — oo. By choosing yg sufficiently big (and then fixing
it) we can guarantee that 0 < a;; < 1/4,i # j. Thus summing the three relations
(3.79) we can write the result in theform (Gu, u) < y/n?, wherey = y1 + y» + y3 and
(@)ij = 8ij + (L —6;)/4, i,j =1, 2,3. Since the minimum eigenvalue of the matrix
a is1/2, we obtain from (3.78) bounds (3.47) and (3.48). O

4. Convergencein Probability

In this section we prove Theorem 2.1. Since, according to Theorem 3.2, the randomness
of U, in (2.1) (or (2.16)) already allows us to prove that the variance of the Stieltjes
transform of theNCM (2.2) vanishesasn — oo, wehaveonly to provethat the additional
randomness due to the matrices A,, and B, in (2.1) does not destroy this property. We
will prove this fact first for A, and B, whose norms are uniformly bounded in n (see
Lemma 4.1 below), and then we will treat the general case of Theorem 2.1 by using a
certain truncating procedure.

Proposition 4.1. Let {m, } be a sequence of random non-negative unit measures on the
line and {s,,} be the sequence of their Stieltjes transforms (2.11). Then the sequence
{m,} converges weakly in probability to a nonrandom non-negative unit measure m if
and only if the sequence {s,,} converges in probability for any fixed z belonging to a
compact K C {z € C : Imz > 0} to the Sieltjes transform f of the measure m.

Proof. Let us prove first the necessity. According to the hypothesis for any continuous
function ¢ (1) having compact support we obtain

nli)ngop{‘/ﬂ/\)mwk) —/<p(/\)mn(dk)

> 8} =0. (4.2

Let x (1) be a continuous function that is equal to 1 if [A\] < A and is equal to O if
I\l > A+ 1 forsome A > 0. Then

X ()»)m(d)») X (AMmy(dAr) 2
I5(2) = sn (@) = V f —z | mindistiz, £A}

According to (4.1) the first term in the r.h.s. of thisinequality converges in probability
to zero. Since A is arbitrary, we obtain the required assertion.
To prove sufficiency we assume that for any z € K,

im Pls(z) —sx(2)] > &} =0. (4.2)
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Thisrelation and the inequality (cf. (2.12))

I52(2)] < max [Imz] ™t = ygt < 00 (4.3)
zeK
imply that
lim E{ls(2) = sa(2)}=0, (4.4)

i.e. the sequence {s, (z)} converges to zero in mean. We have also the inequality

|s,/1(z)| < yo_2 < 0. (4.5)

Inequalities (4.3) and (4.5) imply that the sequence {s,, } ;2 ; of random analytic functions
isuniformly bounded and equicontinuous. Thus, for any n > 0we can construct in K a
finite n-network, i.e. aset {z;}/"] ™ such that for any z € K there exists z; satisfying the
inequality |z — z;| < . Thenwehavefor Gn(2) =sp(2) —5(2), S =1{z: |z—z| < n},
and n = y3e/2, where ¢ is arbitrary

p(n)

SUp I (2)] = max  sup Bn (D) <&+ lenlz)l,

L.p() zekns; =1

and hence

p(m

E(supig ()1} <& + > Ellgnl}.

=1
Thisinequality and (4.4) imply that

lim E{sup|s(z) — s,(2)|} = (4.6)
=00 ek

Assume now that the statement is false, i.e. the sequence {m,} does not converge
weakly in probability to m. This means that there exists a continuous function ¢ of a
compact support, a subsequence {n;} and some ¢ > 0 such that

lim P{‘/go(k)m(dk) —/ga(k)mnk(dk)' > 8} =£ > 0. 4.7
nx— 00

On the other hand, we have from (4.6) and the Tchebyshev inequality that for any r there
exists an integer n(r) such that for n > n(r),

P{Suplfbn(z)l Sr_l} >1-¢§/2 (4.8)

zeK

Hence, one can select from the sequence {n; } asubsequence {n;/} such that inequalities
(4.7) and (4.8) are both satisfied. Denote by .4 and by B the events whose probabilities
arewritten in the I.h.s. of (4.7) and (4.8). Then P{A N B} > P{A}+ P{B} — 1> &/2.
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Hence, for any n; there exists arealization Wy belonging to both sets A and B, i.e. for
which both inequalities

‘ f pOom(di) - f (my, (dm‘ >e. splg,@l<rt (49

zeK

arevalid. In view of the compactness of the family of the random analytic functions {s,, }
with respect to the uniform in K convergence and the weak compactness of the family
of random measure {m,} there exists a subsequence {n, } of {n,} and a subsequence of
realizations {a)n;{/} such that the subsegquence {m,,;(/} corresponding to these realizations
converges weakly to a certain measure m and we havein view of (4.7),

‘ f o(W)m(d)r) — / g0(k)n7(dk)' > ¢ > 0. (4.10)

On the other hand, in view of (4.9) and the continuity of the correspondence between
measures and their Stieltjes transforms (see Proposition 2.1(V)), the subsequence {sng}
converges uniformly on K to s(z), the Stieltjes transform of the measure m. This is
incompatible with (4.10), because of the one-to-one correspondence between measures
and their Stidltjestransforms. O

Remark 1. Since the Stieltjes transforms of non-negative and normalized to unity mea-
sures are analytic and bounded for non-real z, we can replace the requirement of their
convergence for any z belonging to a certain compact set of C.. by the convergence for
any z belonging to any interval of the imaginary axis, i.e. for z = iy, y € [y1, y2l,
y1 > 0.

Remark 2. The argument used in the proof of the proposition proves aso that if {m,,}
IS a sequence of random non-negative measures converging weakly in probability to
a nonrandom non-negative measure m, then the Stieltjes transforms s,, of m,, and the
Stieltjestransform s of m are related as follows:

lim E{sup|s,(z) —s(z)|} =0 (4.11)
n—oo zek

for any compact set K of C...

Lemma 4.1. Let H, betherandomn x n matrix of theform(2.1) inwhich A,, and B,, are
random Hermitian matrices, U,, and V,, are random unitary matrices distributed each
according to the normalized to unity Haar measureon U(n) and A,,, B,,, U, and V,, are
mutually independent. Assume that the normalized counting measures N, ,,, r = 1, 2 of
matrices A, and B, converge in probability asn — oo to non-random non-negative
unit measures N,, r = 1, 2 respectively and that

sup||A,l| < T < oo, sup||Bl| < T < oo. (4.12)

Then the normalized counting measure of H,, convergesin probability to a non-random
unity measure N whose Stieltjes transform f(z) is a unique solution of system (2.18)
in the class of functions f(z), A,(z),r = 1,2 analytic for Im z # 0 and satisfying
conditions (2.12)—«2.14) and (2.19).



On the Law of Addition of Random Matrices 273

Proof. Inview of Proposition 4.1 it sufficesto show that lim,,_, o E{|g,(z) — f(2)|} = 0
for any z belonging to a certain compact set of C... Moreover, according to Remark 1
after Proposition 4.1, we can restrict ourselvesto acertain interval of theimaginary axis,
i.e.to

z=1iy,y €[y1,y2],0 < y1 < y2 < 00. (4.13)

Since condition (4.12) of the lemma implies evidently condition (3.1) of Theorem 3.1
and Theorem 3.2, all the results obtained in these theorems are valid in our case for any
fixed realization of random matrices A,, and B,,. Inaddition, all n-independent estimating
guantities entering various boundsin the proofs of these theorems and depending on the
fourth moment m4 in (3.1) and on yo will depend now on 7 and on y; and y» in (4.13),
but not on particular realizations of random matrices A,, and B,,. We will denote below
all these quantities ssimply by the unique symbol C that may have a different value in
different formulas.

In particular, denoting as above by (...) the expectation with respect to the Haar
measure and using (3.42), we can write that

C
E{lg.(z) — (gn ()]} < E{11?(2)]} < -
Thus, it suffices to show that
lim E{l(¢.(2)) — f@I} =0,z =iy, y € [y1, y2], (4.14)

where y1 isbig enough. Introduce the quantities

V() = iy(gn(@y)) — fY)), Yrn(y) = (8rn(iy)) — Ar(iy), r =1,2.  (4.15)

By using the second equation of system (2.18) we can write the identity

Yu(y) = iyl f2Gy — t1,,(y)) — f2(iy — t1(Y)] + e1,4(y), (4.16)
where
e1n(y) = iy[(gn(iy)) — f2(iy —t1,,(Y)], (4.17)
(01,0 (iy)) A1(iy)
L) = = = . 4.18
a0 = i Y= Ty (4.18)
We have

E{ler, W1} < y2E{I{gn(@y)) — g2.n(iy — 11, (YD)}
E{lg2n(iy — t1,(y)) — f2(iy — t1.(Y)I}. (4.19)

The analogues of (3.38), (3.39) in our case are:

(81(2)) = g2.0(z — (1.4} (€n(2)) ™Y +T10(2), (4.20)

where

N2,n(d)‘)
A—2Z

’

g2.0(2) =n"MrGa(z) =
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is the Stieltjes transform of random NCM N>, of H ,,
L) = — (g2@n TP Heg(2))1G(2))
— (83, (@n TP Hgu(2)) " 1G2(2) G (2)),

the symbol (...) denotes the expectation with respect to the Haar measure on U (n),
P =1-G2(2)t1,,(2), and

8,(2) = gn(2) — (gn(2)), 87 ,(2) = 81,0(2) — (81,n(2)) (4.21)

are the respective random variables centralized by the partial expectations with respect
to the Haar measure. In addition, we have the analogue of (3.43),

C
[FLa(2)] < —.

Thisleads to the following bound for the first term in the r.h.s. of (4.19):

~ . C
E{l{gn(iy)) — g1.n(iy — 2, (M} = E{[r1n Gy} < e

To show that the second term also vanishesasn — oo, we use the analogues of (3.32)
and (3.36),

_ 1| T : T
(8Ln(iy)) + —| = =, 182V = —,
iyl oy y

which imply that
(V| < 2T, (4.22)
if y1 ishbig enough. Thus

E{lg2n(iy —11,,(y)) — f2(iy —11.2(y)I} < |(SllJIOT E{lg2n Gy +¢) — faliy + DI}

The r.h.s of this inequality tends to zero as n — oo in view of the hypothesis of
Theorem 2.1 and Remark 2 after Proposition 4.1. Thus, thereexist 0 < y1 < y2 < o0
such that for al y € [y1, y2], lim,— o E{|e1., ()|} = 0. Analogous arguments show
that lim,_ - E{|e2.,(y)|} = O, where 2, (y) is defined in (4.17) and in (4.18) where
theindices 1 and 2 are interchanged. Thus we have

lim E{le,,(»)]} =0, r=1,2. (4.23)
n—oo

Consider now thefirst terminthel.h.s. of (4.16). In view of (2.5) we can write thisterm
in the form
(81,n) iy

Lyy + =Dy, = —ai1yn + biyia,
flgn) =" " " "
(4.24)

[f2(iy —t1,(y)) — f2(iy —t1(y))] = —

where I, a1 and b1 aredefined by formulas(3.15) and (3.16), inwhichwehaveto replace
Ay, AL, f'and f” by Aq, (81,,), f and (g,) respectively. Denote by & = (013,
the matrix defined by the I.h.s. of system (3.14) and by I' = {1“,-}1.3:1 the vector with
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components I'y = y,, I'2 = y1., '3 = y2.,. Then we have from (4.16), (4.23) and
(4.24),

E{|(®T)1]} < E{lernl}- (4.25)
Interchanging in the above argument indices 1 and 2 we obtain also that
E{l(®D)2[} < E{le2.nl}- (4.26)

Besides, applying to the identity G(z)(H1 + H» — z) = 1 the operation (n 177 ...)
and subtracting from the result the third equation of system (2.18), we obtain one more
relation,

E{[(®I)s3]} = 0. (4.27)

It follows from the proof of Proposition 3.3 that the matrix @ is invertible if y; is big
enough. Denote by || ... ||1 the /1-norm of C3 and by || .. .|| the induced matrix norm.
Then we have

E(IT[11} < E{[|®~ 1T )1} < EV2{|o | EY2{||0T|3). (4.28)

It follows from our arguments above that all entries of the matrices ® and ®~* and all
components of the vector I" are bounded uniformly in » and in realizations of random
matrices A,,B,, U, and V,, in (2.1). Thus we have

3 3
1o = 3 1@ Hyl =€ 19Tl = Y 1@ylIT); = C.
i.j=1 b=l

These bounds and (4.25)—4.28) imply that
E{ITI11} < C¥2(Elleanl} + Elle2nlDY2.
In view of (4.23) this inequality implies (4.14), i.e. the assertion of the lemma. O

Now we extend the result of Lemma 4.1 for the case of unbounded A,, and B,,, having
the limiting NCM’s with the fnite first moments. We will apply the truncation technique
standard in probability, whose random matrix version was used already in [16,19].

Proof of Theorem 2.1. Without loss of generality we can assume that
supf IME{N1,(dX)} < m1 < oo. (4.29)

Forany T > 0 introduce the matrices A" and B! replacing eigenvalues A, and B, lying
in ]T, oo[ by T and eigenvalues lying in ] — oo, —T] by —T'. Denote by Ngn, r=12
the NCM of AT and BT. It is clear that for any T > 0 and r = 1, 2, the sequence
{an}nzl converges weakly in probability to the measures N7 as n — oo, where
N are analogously defined via N, and have their supports in [T, T], and that for
each r = 1, 2 the sequence {N[}7-1 converges weakly to N, as T — oo. Denote by
NI, r=12theNCMof H = H] + Hj K =V*Al'V, + UsB!U,. According to
linear algebra, if M,, r = 1, 2 are two Hermitian n x n matrices, then

rank(M1 + M>) < rankMq + rank Mo, (4.30)
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andif {u,}]_4,r =1, 2areeigenvaluesof M,, r = 1, 2, thenfor any Borel set A € R,
[#{n1, € A} —#{uoy € A} < rank(My — M>).

By using these facts we find that

IN.(A) = NI(A)| < 3rank<Hn —H]) < Erank(An — Al
n n
+ Erank(Bn - B,{) < Nl,n(R\] - T, TD + N2,n(R\] - T» T[), (431)
n

valid for any Borel set A € R. As aresult, the Stieltjes transform g!' of NI and the
Stieltjestransform g,, of N,, are related asfollows:

187(2) — gu(2)] < ﬁ (Npa(R\] = T, T[) + Noy (R\] — T, T])) .

hence

Eflg) ) — g} < “:]:—d (E{N1,n(R\] = T, TD} 4+ E{N2,, (R\] = T, T])}),
(4.32)

and

n|l>no10 E{Nr,n(R\] —T,TD} < 1- N(1-T,T]) = 0(1)’ T — oo.

Since the norms of matrices H{ and H. are bounded, the results of Lemma 4.1 are
applicableto the function g (z), so that, in particular, for any non-real z it convergesin
probability asn — oo to afunction 77 (z) satisfying the system

T
@) = fT (z 22 (Z)) |

TR

AT (2)
ffo=1r (z— f;(z)),
o= 12AM@ =80

-z
In addition, since E{g! (z)} and E{8£n(z)} are bounded uniformly inn and T for z €
E(yo) :
1
[Efg) )} < —,
Yo

mi1

1 1
6T, @) < — / AENT, (1) < — / AE(NL. (@A)} <
Yo Yo Yo

we have

1
1T @) < = 1aT @) < 22, (4.33)
Yo Yo
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Thus, thereexistsasequence T, — oo suchthat sequencesof anaytic functions{ 1 7 (z)}
and {Afk (z)} converge uniformly on any compact set of the E (yg) of (4.32). In addition,

the measures N,*, r = 1, 2 converge weakly to the limiting measures N,, r = 1, 2.
Hence, there exist three analytic functions f(z), A1(z) and Az(z) = zf (z2) + 1 — A1(z)
verifying (2.18). Besides, because of (4.33) and (3.1) for z € E(yo) we have

1A1(2)] < ”yiol and A,(z) = o(1) as yo — 0.

As aresult of the relations above, f(z) and A, (z), r = 1, 2 satisfy the conditions of
Proposition 3.3, hence they are defined uniquely.
Furthermore, we have

Eflgn(z) — f()]} < Ellgn(2) — g @)1} + Ellgl (2) — T @) + 1T (2) — £ ).

Hencein view of (4.32), of the arguments above on the convergence of f7x to £, and of
Lemma4.1 we conclude that for each z € E(yp),

lim E{lg(2) — F@)]} =0,

In view of Proposition 4.1 this implies that the NCM (2.2) of random matrices (2.1)
converges weakly in probability asn — oo to the non-random measure, whose Stieltjes
transform is a unique solution of system (2.18). O

5. Properties of the Solution

Here we will consider several smple properties of the limiting eigenvalue counting
measure described by Theorem 2.1, i.e. the measure whose Stieltjes transform is a
solution of (2.18) satisfying (2.12)—(2.14). We refer the reader to works [31,2,4, 3] and
referencesthereinfor arather complete collection of results on propertiesof the measure,
resulting from the binary operation in the space of the probability measures, defined by
aversion of system (2.18). This binary operation is called free additive convolution.

(i) Assume that the supports of the limiting eigenval ue measures of the matrices A,, and
B, arebounded, i.e. thereexist —oo < a, b, < oo, r =1, 2, such that

supp N, C la,, by l,r =1, 2. (5.1
Then

SUPP N C [a1 + az, by + b]. (5.2

Proof. Denoteby {A;};_, andby {A,;}]_,,r = 1, 2eigenvaluesof H, and H, , in(2.1)
respectively. Then, according to the linear algebra (cf.(4.31)),

#{A; € R\[a1 + a2, by + b2]} < #{A1; € R\[aq, b1]} +#{r2; € R\[az, b2]}.

Inview of Theorem 2.1 and (5.1) thisleadsto therelation N (R\ o) = 0, i.e. to (5.2).
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(i) Examples. 1. Consider the case when A,,=B,,, i.e. N1 = N>. In this case system
(2.18) will have the form

Z 2
f@=n (5 — m) . (5.3)

TakeN1 =N =adp+ (1 —«a) 84, Wwhere0 < a < 1,a > 0and §, istheunit measure
concentrated at . € R. Then

—o l-«o

@)= —+
Z

a—z

and (2.18) reduces to the quadratic equation
Z(Z—Za)f2+2a(l—2a)f—1:O,
whose solution satisfying (2.12) - (2.14) is

f@) = el = 2) Z_(Z‘/_(Zzg))“+)(z —A) = a(l+2/a(l—a)).

By using (2.15) we find that the limiting measure in this case has the form
N=Q2ux—21480+ (1—2a):82, + N*, (5.9

where x4 = max(0, x), and

N*(dh) = 1\/(A+ — MDA —=2o)
B A0 — 2a)

X[0.241(A)dA (5.5)

is the absol ute continuous measure of the mass 1 — 2a. Here xa (1) isthe indicator of
theset A C R.Inthecasesa = 0,1 (5.4) is 5z, and §g respectively, and in the case
a = 1/2 (5.4) has no atoms, but only the square root singularities

. B 1
N*(dr) = TR X10.241(A)dA.. (5.6)
Formulas (5.3)—(5.6) show that:

— theresult (5.2) is optimal with respect to the endpoints of the measures N,,r = 1, 2
and N;

— inthe case when N1 = N> have atoms of the mass 1« > 1/2 at the same point then
the measure N has also an atom of the mass (21 — 1) (for general results of thistype
see[3]).

However, in general the support of N is strictly included in the sum of supports of
measures N,, r = 1, 2, i.e. theinclusion in the r.h.s part of (5.3) is strict. This can be
illustrated by the following two examples.

2. Take again N1 = N2, where now

Ni(dr) = Xl—a,a](A)dA

1
a? —72)
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isthe arcsin law. This measure corresponds to the matrix ensemble (2.37) with

0, Al <1,

oo, [\ > 1. (5.7)

V(r) = {

In this case the equation in (5.3) is again quadratic and leads to

2_)L2)

N(dh) = 7.[(4a2 _ )\2) X[—/3a,+/3a]

(A)d.

3. In the next example we take

\/ 8Clr2 - )“ZX[—Z«/Ear,Z,ﬁar]()“)d)" r = 1, 2,

i.e. both measures are the semicirclelaws (2.31). Thenitiseasy tofind that N isalso the
semicircle measure with the parameter a? = a2 + a2. This case wasindicated in [19]. It
can be easily deduced from the law of addition of the R-transforms of Voiculescu [31],
becauseinthiscase R, (f) = 2ar2 f . For further properties of the measure N in the case
whenoneof N,, r = 1, 2isthe semicircle law see [14,4].

Ny (d)h) =

2
4 at

(ilf) Suppose that one of the measures N, (di), r = 1, 2 is absolutely continuous with
respect to the Lebesgue measure, i.e,, say, N1(d1) = p1(A)da, and

p1=€sssup|p1(2)| < o0.
reR

Then N isalso absolutely continuouswith respect to the Lebesgue measure, i.e. N (dA) =
p(A)da, and

esssup [p1(A)| = pp < oo. (5.8)
reR

Proof. Indeed, since the function z7 = z — A2 1/f(z) is analytic for non-real z, the
number of its zerosin any compact set of C\R isfinite. Thus, for any A € R there exists
a sequence {z,} of non-real numbers such that z, — * asn — oo and Im z # O.
Hence, we have from the first equation of system (2.18) for z = A} +ie}\,

1 e} pr()du _1 g du
— 2 2 = P1 "2 2
) (w—=21H)%+ () mJ (u—=2ArH)e+ ()

1
ZImf(z) = =71
T

This relation and the inversion formula (2.15) yield (5.8). For more general resultsin
this direction see the recent paper [3]. O
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6. Discussion

In this section we comment on several topics related to those studied above.

1. In this paper we deal with Hermitian and unitary matrices, i.e. we assume that the
matrices A, and B, in (2.1) are Hermitian and U,, and V,, are unitary. It is natural also
to consider the case of real symmetric A,, and B,, and orthogonal U,, and V,,. This case
can be handled by using the analogue of formula (3.11) of the orthogonal group O (n).
Indeed, it is easy to seethat this analogue has the form

f ®(0TMO0)-[X,0"M0O]dO =0,
0(n)

where O istransposed to O and X is areal symmetric matrix. By using this formula
we obtain instead of (3.23),

(Gaa(HZG)bc> + <Gab(H2G)ac> = <(GH2)aaGbc> + ((GHZ)abic>~

The second terms in both sides of this formula give two additional terms
—n"1GTHyG + n 1H,GT G

(cf. (3.40)). These terms, however, produce the asymptotically vanishing contribution
because, in view of (3.3), (3.6) and (3.37), we have

2
n 2(Tr(L+ Az £, 2G1) " 1G1(—GT HaG + HoGT G))| < —my/*.
nyg

Similar and also negligible asn — oo terms appear in analogues of formulas (3.53),
(3.69) and (3.73) of the proof of Theorem 3.2. As the result, we obtain in this case the
same system (2.18), defining the Stieltjes transform of the limiting eigenval ue counting
measure of the analogue of (2.1) with the real symmetric A, and B, and orthogonal
Haar-distributed U,, and V,,.

2. Aswasmentioned in the Introduction, our main result, Theorem 2.1, can beviewed
as an extension of the result by Speicher [26], obtained by the moment method and valid
for uniformly in n bounded matrices A,, and B, in (2.1). Both results are analogues
for randomly rotated matrices of old results of [16,19] (see (2.24) and (2.33)) on the
form of the limiting eigenval ue counting measure of the sum of an arbitrary matrix and
certain random matrices (see (2.20) and (2.26)), in particular, Gaussian random matrices
(2.28). In this case, however, there exists another model, proposed by Wegner [32] that
combines properties of random matrices, having all entries roughly of the same order,
and of random operators, whose entries decay sufficiently fast in the distance from the
principal diagonal (seee.g. [22]). A simple, but rather non-trivial version of the Wegner
model corresponds to the selfadjoint operator H acting in 1%(Z¢) x C" and defined by
the matrix

H(x, j;y, k) = v(x — y)djk +8(x — y) fik(x), (6.1)
wherex,y € Z%, j,k=1,...,n, §(x) isthe d-dimensional Kronecker symbol,
v(—x) = B(x), Z lv(x)| < o0, (6.2)

xezd
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and f(x) = {fjk(X)}’;’kzl, x € Z¢ are independent for different x and identically
distributed n x n Hermitian matrices, whose distribution for any x is given by (2.28).
According to [32] (see also [14]) asymptotic for n — oo properties of operator (6.1)
resemble, in many aspects, asymptotic properties of matrices(2.28). The*“free” analogue
of the Wegner model was proposed in [18]. In this case i.i.d. matrices f(x) have the
form

fx) = U:(X)BnUn(x)a (6.3)

where B, isasin (2.1) and U, (x), x € Z% arei.i.d. unitary n x n matrices whose
distribution is given by the Haar measure on U (n). By using a version of the moment
method, similar to that of paper [26], or, rather, its forma scheme, the authors derived
the limiting form of

E inlzmx,]’; y,j)} ,

j=1

where G(x, j; y, k) is the matrix (the Green function) of the resolvent (H — z)~* of
(6.1)—6.3). The authors also found a certain second moment of the Green function. This
moment is necessary to compute the a.c. conductivity viathe Kubo formula. Because of
the moment method results of [18] are valid for uniformly bounded in n matrices B, in
(6.3), similar to results for matrices (2.1) obtained in [26]. By using a natural extension
of the differentiation formula (3.11) and the technique developed in [14] to analyze the
Wegner model, the results of paper [ 18] can be extended to the case of arbitrary matrices
B, in (6.3), because in this case the role of condition (2.17) of Theorem 2.1) plays
condition (6.2).

3. Aswas mentioned before asymptotic properties of random matrices are of consid-
erable interest in certain branches of operator algebra theory and in the related branch
of non-commutative probability theory, known as free probability (see [28,31,30] and
referencestherein). Here large random matrices are an important example of the asymp-
totically free non-commutative random variables, providing a sufficiently rich analytic
model of the abstract notion of freeness of elements of an operator algebra. The most
widely used examples of asymptotically free families of non-commutative random vari-
ables are Gaussian random matrices and unitary Haar-distributed random matrices. The
proof of asymptotic freeness of unitary matrices given in [28,31] reduces to that for
complex Gaussian matrices and is based on the observation that the unitary part of the
polar decomposition of the complex Gaussian matrix with independent entries is the
Haar-distributed unitary matrix. This method requires certain technicalities because of
the singularity of the polar decomposition at zero. On the other hand, the differentiation
formula (3.11) allows one to prove directly similar statements. Here is an example of
results of thistype (related results are proved in [35]).

Theorem 6.1. Let k be a positive integer, {7}, }*_; be a set of n x nmatrices, such that

sup  n ITH(TE ) < oo, (6.4)
r<k; k,I,neN ’

and let U,, be the unitary and Haar-distributed random matrix. If for any k € N,

lim n 7, =0, r=1,... k, (6.5)

n—oo
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then for any set of non-zero integers such that {mr}’;zl, er‘zl m, =0,

lim (n " TrU™ Ty, ... U™ T, ) =0, (6.6)

n—oo

where (-) denotes the integration with respect to the Haar measure over U (n).

Remark 1. The theorem istrivialy true in the case when Z’r‘zl m, # 0.

In the two subsequent lemmas we omit the subindex 7.

Lemma®6.l. Let {T; }le beaset of n x n matricesand U isthe Haar-distributed unitary

matrix. Thenfor any set of non-zerointegers{m; }fle, Zf-‘zl m; = Othefollowingidentity
holds:

mi

n T TUMTL . U™ T = = Y (0 iU T e L umem)
11=2

mr
— Z Z(n_lTr(U’"lTl T U YHp ey =T U Ty)
re{2,...,k},m,>0 [,=1
o,
+ > Y UMy T U T U T UM T)),
re{2,...,k},m,<0 [,=1
(6.7)

Proof. Without loss of generality assume that m1 > 0. Then, using the analogue of
formula (3.11) for the average ([U™ Ty ... U™ Ty ]ap), We Obtain for any Hermitian X,

my
> Y (U™ T URT XU T U T )
re{l,....k},m,>010.=1
o,

> U™y LU XU™ T, U™ Tila) = 0. (6.8)
re{2,....k},m,<010.=1

Choosing as X the Hermitian matrix having only (¢, d)th and (d, ¢)th non-zero entries,
setting then @ = ¢ and b = d and applying to the result the operation n 2 > We
obtain (6.7). O

Lemma 6.2. Under the conditions (6.4) and (6.5) the variance D = (|£°|?) of the
random variable

£=n"1TrL, L =U™Ty...U™Ty (6.9)

isof theorder n=2 asn — oo.
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Proof. Using the same technique as that in Lemma 6.1 for (L,,L.q) We obtain the
relation

mq
D=-> En o T i T U Ty)
11=2

my
- Y DY Ertrum . LU YT T T R L UM T)
re{2,....k},m,>010.=1
—m,
+ Z Z(?On_lTr(UmlTl e Tr—]_U_l’)n_lTr(Umr-f—lr T, ...U™Ty))
re{2,...k},m,<01.=1

+n 20,
(6.10)
where
my
D= — oo Y et T L L U™ T UYL
re{l,....k},m,>0 [,=1
.

+ > > T T UM Ty T, UL,
re{2,....,k},m,<0 [,=1

We have obvioudly for k = m =1,
_ 1
(n T WT)°n ' TrUT)) < Sn M Tr(IT).
n

We proceed further by induction. In view of condition (6.4) and Proposition 3.1 we have
the bound

nITr(U™T,, ...UM T,)| < C? (6.11)

where C may depend only on p. Now, since n~1Tr(U') = 0, # 0, the summands of
thefirst terminr.h.s. of (6.10) can be estimated as follows:

En ITrwn tTrum—tin U™ Tk))) < CJB\/ (In~=1Tr(U1)°|2). (6.12)
Likewise, by using the cyclic property of the trace, the identity (a°bc) = (a°b°c) +

{(a°c®)(b), Schwarz inequality, and (6.11), we obtain for the second term in the right-
hand side of (6.10) the following estimates for r > 2:

En T U™ Ty .. T, U Y e, Tk))‘

<cvD {\/<|n—lTr(Um1+lr—1T1 UM, 1)°?)

+\/ (In=1Tr(Umr=l+1T, .. UM Tk)°|2)} . (6.13)
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Thethird term in the right-hand side of (6.10) can be estimated analogously. The fourth
term is of the order 1/n2 in view of (6.9). By the induction hypothesis the expectations
under square roots in the r.h.s. of (6.13) and (6.12) are of the order n~2. This leads to
the inequality

where C1 and C» are independent of n. Thisimpliesthebound D = 0(n=2). O

Proof of Theorem 6.1. We use Lemma 6.1 and again the induction. We have first
n U TW " To) = n *TrTin 1T = 0.

In the general case we use Lemma 6.2 to factorize asymptotically the moments in the
rh.s. of (6.7). In the resulting relation the expressions n =1 Tr(U™1T,, ... U™ T, ) are
zero for any collection (74, ..., T,,) and any n, if Z;‘zlm,i # 0, and tend to zero as
n — oo if > 7_;m, = 0inview of the induction hypothesis and condition (6.5). This
leadsto (6.6). O

Remark 2. A simple version of the above arguments alows us to prove that the normal -
ized counting measure of theHaar distributed unitary matricesconvergeswith probability
one to the uniform distribution on the unit circle. Indeed, consider again the Stieltjes
transform g,, of this measure, supported now on the unit circle. By the spectral theorem
for unitary matrices we have

2.2 =n"TrG(), G@)=U -2 |21 £ 1. (6.14)
We can then obtain the following identities:
(TrG*(2)U) =0, (g2()n " TrGw)U) = 0, (6.15)
(gn(z)n TTrG(z1)Ug(22)) + (n>TrG(z1)G(22)U G(z2)) =O. (6.16)
By using the obvious relations
G'(z) = G%(2), G(0O)=U"1, G(c0) =0,
we obtain from the first of identities (6.15)

0, lz| <1
—z74 |zl > L

fn(2) = (gn(2)) = {

This relation shows that the expectation of the normalized counting measure of U is
the uniform distribution on the unit circle, the fact that follows easily from the shift
invariance of the Haar measure. Now the second identity (6.15) and (6.16) lead to the
bound

C(ro)

(&n@)° = =—5=, Izl <o

where C(rp) isindependent of » and finite if rg is small enough. This bound and argu-
ments anal ogous to those used in the proof of Theorem 3.1 imply that the normalized
eigenvalue counting measure of unitary Haar distributed random matrices converges
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with probability one to the uniform distribution on the unit circle. This fact as well as
the analogous fact for the orthogonal group can be deduced from the works by Dyson
(see e.g. [17]), where the joint probability distribution of all » eigenvalues of the Haar
distributed unitary or orthogonal matrices was found and studied. This technique is more
powerful but also more complex than that used above and based on rather elementary
means.
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