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Abstract

Using the theory of lattices of non-crossing partitions, an explicit expression for
the moments and free cumulants of the asymptotic distribution of certain infinite ran-
dom matrices is obtained and extended to several cases. From the explicit expres-
sion, we give a self-contained proof of the Tse-Hanly formula for the output signal-to-
interference-plus-noise ratio of MMSE multiuser detector. We use the moment results
to design an asymptotic reduced-rank linear multiuser detector. Also we apply these
results to analyze linear-conjugate MMSE receivers and multiple antenna receivers.

1 Introduction

In order to gain insight into the performance of receivers in a DS-CDMA system with
large processing gain and many users, much work has been devoted to the asymptotic
analysis for synchronous DS-CDMA with random spreading [17, 7, 15]. In [15], the
asymptotic output signal-to-interference-plus-noise ratio (SINR) of the MMSE receiver
is shown to satisfy a fixed point equation by using recent results on the asymptotic eigen-
value distribution of certain infinite random matrices. The reduced-rank MMSE receiver
is proposed and analyzed in [10]. As discussed in [10] the moments of the asymptotic
eigenvalue distribution of some infinite random matrix are relevant to find the large sys-
tem limit of the output SINR and the optimal weights of the reduced-rank receiver. Sev-
eral recursive procedures to obtain the asymptotic eigenvalue moments are proposed in
[20, 10]. A certain combinatorial problem is shown in [20] to be equivalent to the problem
of computing the moments explicitly.

In Section 2, using the theory of lattices of non-crossing partitions, explicit expres-
sions for the asymptotic eigenvalue moments of the correlation matrix of the CDMA sig-
nal SDSH (S is a matrix whose columns are the normalized spreading sequences of the
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users, and D is a diagonal matrix with diagonal elements the received powers of the
users), with (�)H denoting the conjugate transpose, are obtained for several classes of in-
finite random matrices. In case (i) S consists of i.i.d. random variables, and the explicit
expression for the moments is obtained by solving the combinatorial problem formulated
in [20]. This kind of S (i.i.d. entries) arises when we consider a single receive antenna DS-
CDMA system with random spreading. In case (ii) each column of S consists of repeated
i.i.d. sequences with block i.i.d. phases; this kind of S arises when we consider multiple
receive antenna randomly-spread DS-CDMA where the phases of the fading coefficients
at different antenna elements are independent. In case (iii) each column of S consists of
repeated i.i.d. sequences with linearly increasing phases; this kind of S arises when we
consider multiantenna receiver for DS-CDMA in line-of-sight transmission. In cases (iv),
(v) and (vi), each column of S is formed by stacking the matrices in (i), (ii) and (iii) with
their conjugate. These kinds of S arise when we consider the newly proposed linear-
conjugate MMSE (LCM) receiver [16] for single antenna and multiple antenna systems.

There are several motivations and applications for the results in Section 2, which
are discussed in detail in Section 3. In Section 3.1, the large-system limit of the opti-
mal weights for the reduced-rank MMSE/LCM receivers is obtained from the explicit
expression of the moments. Six environments are considered, corresponding to the direct
applications of the results of the six classes of matrices obtained in Section 2. Receivers
that employ the asymptotic limit of the optimal weights instead of the optimal weights
themselves are called asymptotic reduced-rank receivers. The desirable feature of these
receivers is that the asymptotic limit of the optimal weights does not depend on the re-
alizations of the spreading sequences, which is particularly useful when the CDMA sys-
tem uses long sequences. With the pre-calculated asymptotic weights, the reduced-rank
MMSE/LCM receivers can be implemented in an efficient way as discussed in [12]. In
Section 3.2 the asymptotic performance of the receivers considered in 3.1 is given and
the asymptotic equivalence of them is established. In Section 4, based on the result on
the moments we give a self-contained proof of the fixed point equation satisfied by the
asymptotic output SINR of the MMSE receiver, which is originally derived in [15] by
means of the Silverstein and Bai theorem [13]. Section 5 contains our numerical results,
which show that for reasonably large processing gain (N = 32), the output SINR of the
asymptotic reduced-rank receiver lies within 1 dB from that of the reduced-rank receiver
using spreading-sequence-dependent optimal weights. For larger processing gain, say 80
or larger, the performance gap between the two receivers is less than 0:5 dB.

2 Asymptotic Eigenvalue Moments

In this section we state our results on the asymptotic eigenvalue moments. Correspond-
ing situations in which these results can be applied are discussed in Section 3.

Definition: Let us consider the vector space of the n� n matricesMn(C) whose elements
are complex random variables. Mn(C) with the ordinary sum, and product, and adjunc-
tion (Hermitian transpose) is a ��algebra. It said that the random matrix Vn 2 Mn(C)
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has the m-th limit moment �m if exists finite the following limit

�m , lim
n!1

1

n
E[TracefVm

n g]:

The set of all limit moments of the matrix Vn defines the the limit distribution of Vn.
If Vn is a self-adjoint matrix, the limit distribution of Vn is the function, F (�), de-

scribed by the collection of its moments [18, 9] as follow:Z
�mdF (�) , lim

n!1

1

n
E[TracefVm

n g]

F (�) is also called the limit eigenvalue distribution of Vn and it is easy to see [18, 9] that:

F (�) = lim
n!1

E[Fn(�)]

where Fn(�) is the empirical distribution of the eigenvalues of Vn [18].
Let us introduce here the necessary notation used in the following results: sup-

pose a vector of k integers m1; : : : ; mk is partitioned into n equivalence classes under the
equivalence relation a = b, and the cardinalities of the equivalence classes are given by
f1; : : : ; fn, then we define the following function:

f(m1; : : : ; mk) , f1! � � � fn!:

For example, f(1; 1; 4; 2; 1; 2) = 3! � 2! � 1!.
The proofs of Propositions 1 and 4 are given in Appendices A and B respectively.

Propositions 2, 3, 5, 6 can be shown following similar methods used in the proof of Propo-
sition 4 and a brief explanation of the proofs is given at the end of Appendix B.

2.1 I.I.D. Sequences

Proposition 1: Suppose the N �K matrix S consists of i.i.d. zero-mean random variables with
variance 1=N , D is a K � K diagonal matrix with non-negative diagonal elements, and the
empirical distribution of the diagonal elements of D converges almost surely (a.s.) to a non-
random limit distribution. Then the mth moment of the limit eigenvalue distribution G(�) of
SDS

H as K, N go to infinity with K=N = � is:

Z
�mdG(�) =

mX
k=1

�k
X

m1+���+mk=m

c(m1; : : : ; mk) � E[�m1 ] � � �E[�mk ]; (1)

where � is a nonnegative random variable whose distribution is the non-random limit distribution
of the diagonal elements of D, and

c(m1; : : : ; mk) =
m!

(m� k + 1)! � f(m1; : : : ; mk)
; (2)

with f(m1; : : : ; mk) is as defined above.

Proof: In Appendix A.
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An equivalent result on the asymptotic eigenvalue moments in the i.i.d.-sequences
case can be found in [21] in a slightly different form. The reason we still present our proof
for this case (in Appendix A) is to introduce necessary techniques that are to be used in
the generalization to other cases. A few remarks on the assumption made in Proposition
1 will be made in Section 3.1.1.

2.2 Repeated Sequences with Block I.I.D. Phases

Proposition 2: Let N = LN 0. Let tk = (Uk;1; : : : ; Uk;N 0)
T (1 � k � K), where Uk;j’s (1 � k �

K; 1 � j � N 0) are an array of real- valued i.i.d. zero-mean random variables with unit variance.
Let S = (s1; : : : ; sK) where

sk =
1
p
N

(tTk e
j�k;1 ; : : : ; tTk e

j�k;L)T ; (3)

and �k;l’s (1 � k � K; 1 � l � L) are i.i.d. random variables uniformly distributed on [0; 2�),
and 1=

p
N is the normalizing factor. D is a K �K diagonal matrix with non-negative diagonal

elements, and the empirical distribution of the diagonal elements of D converges a.s. to a non-
random limit distribution. Then the mth moment of the limit eigenvalue distribution G(�) of
SDS

H as K, N go to infinity with K=N = � is the same as in Proposition 1, i.e. (1).

Proof: Refer to Appendix B for a brief explanation of the proof.

2.3 Conjugate Sequences

Proposition 3: Let N=2N’. Let tk = (Uk;1; : : : ; Uk;N 0)
T (1 � k � K), where Uk;j’s (1 � k �

K; 1 � j � N 0) are an array of real- valued i.i.d. zero-mean random variables with unit variance.
Let S = (s1; : : : ; sK) where

sk =
1
p
N

(tTk e
j�k ; tTk e

�j�k)T ; (4)

and �k’s (1 � k � K) are i.i.d. random variables uniformly distributed on [0; 2�), and 1=
p
N

is the normalizing factor. D is a K � K diagonal matrix with non-negative diagonal elements,
and the empirical distribution of the diagonal elements of D converges a.s. to a non-random limit
distribution. Then the mth moment of the limit eigenvalue distribution G(�) of SDSH as K, N
go to infinity with K=N = � is the same as in Proposition 1.

Proof: Refer to Appendix B for a brief explanation of the proof.

2.4 Repeated Sequences with Conjugate Block I.I.D. Phases

Proposition 4: Let N=2LN’. Let tk = (Uk;1; : : : ; Uk;N 0)
T (1 � k � K), where Uk;j’s (1 � k �

K; 1 � j � N 0) are an array of real- valued i.i.d. zero-mean random variables with unit variance.
Let S = (s1; : : : ; sK) where

sk =
1
p
N

(tTk e
j�k;1; : : : ; tTk e

j�k;L; tTk e
�j�k;1; : : : ; tTk e

�j�k;L)T ; (5)
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and �k;l’s (1 � k � K; 1 � l � L) are i.i.d. random variables uniformly distributed on [0; 2�),
and 1=

p
N is the normalizing factor. D is a K �K diagonal matrix with non-negative diagonal

elements, and the empirical distribution of the diagonal elements of D converges a.s. to a non-
random limit distribution. Then the mth moment of the limit eigenvalue distribution G(�) of
SDS

H as K, N go to infinity with K=N = � is the same as in Proposition 1.

Proof: In Appendix B.

2.5 Repeated Sequences with Linearly Increasing Phases

Proposition 5: Let N=LN’. Let tk = (Uk;1; : : : ; Uk;N 0)
T (1 � k � K), where Uk;j’s (1 � k �

K; 1 � j � N 0) are an array of real- valued i.i.d. zero-mean random variables with unit variance.
Let S = (s1; : : : ; sK) where

sk =
1
p
N

(tTk e
j�k ; tTk e

2j�k ; : : : ; tTk e
Lj�k)T ; (6)

and �k’s (1 � k � K) are i.i.d. random variables uniformly distributed on [0; 2�), and 1=
p
N

is the normalizing factor. D is a K � K diagonal matrix with non-negative diagonal elements,
and the empirical distribution of the diagonal elements of D converges a.s. to a non-random limit
distribution. Then the mth moment of the limit eigenvalue distribution G(�) of SDSH as K, N
go to infinity with K=N = � is the same as in Proposition 1.

Proof: Refer to Appendix B for a brief explanation of the proof.

2.6 Repeated Sequences with Conjugate Linearly Increasing Phases

Proposition 6: Let N=2LN’. Let tk = (Uk;1; : : : ; Uk;N 0)
T (1 � k � K), where Uk;j’s (1 � k �

K; 1 � j � N 0) are an array of real- valued i.i.d. zero-mean random variables with unit variance.
Let S = (s1; : : : ; sK) where

sk =
1
p
N

(tTk e
j�k ; : : : ; tTk e

Lj�k ; tTk e
�j�k ; : : : ; tTk e

�Lj�k)T ; (7)

and �k’s (1 � k � K) are i.i.d. random variables uniformly distributed on [0; 2�), and 1=
p
N

is the normalizing factor. D is a K � K diagonal matrix with non-negative diagonal elements,
and the empirical distribution of the diagonal elements of D converges a.s. to a non-random limit
distribution. Then the mth moment of the limit eigenvalue distribution G(�) of SDSH as K, N
go to infinity with K=N = � is the same as in Proposition 1.

Proof: Refer to Appendix B for a brief explanation of the proof.

3 Motivations and Applications

In this section, we discuss motivations and applications of the results in Section 2.
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3.1 Asymptotic Reduced-Rank Receiver

Expressions for the asymptotic moments can be used to implement the asymptotic redu-
ced-rank MMSE/LCM receivers. With the pre-calculated asymptotic weights, the redu-
ced-rank MMSE/LCM receivers can be implemented in an efficient way as discussed in
[12]. In what follows, we consider six situations: (i) reduced-rank single antenna MMSE
receiver; (ii) reduced-rank multiantenna MMSE receiver; (iii) reduced-rank single antenna
LCM receiver; (iv) reduced-rank multiantenna LCM receiver; (v) reduced-rank multi-
antenna MMSE receiver in line-of-sight transmission; (vi) reduced-rank multiantenna
LCM receiver in line-of-sight transmission. These situations correspond to applications
of Propositions 1-6, respectively.

In these situations, we assume synchronous DS-CDMA with processing gain N

and number of users K. Ak is the received amplitude of user k, bk 2 f�1g is the bit
transmitted by user k, and sk is the spreading sequence of user k. For a single antenna
receiver, the phase of the complex fading coefficient of user k is ej�k . For a multiantenna
receiver, the phase of the complex fading coefficient of user k at the lth antenna element
is ej�k(l). The phases (�k’s or �k(l)’s) are modelled as i.i.d. random variables uniformly
distributed on [0; 2�). The spreading sequences are assumed known at the receiver. Per-
fect knowledge of the fading channel gain (magnitude and phase) at the receiver is also
assumed, which could be the case at a base station. For a single antenna receiver, the
noise vector at the output of the chip-matched filter is n. For a multiantenna receiver,
nl is the chip-matched filter output noise vector at the lth antenna element, and they are
independent across antenna elements. The distribution of the noise vector is N(0; �2I).
Random spreading is used to model the spreading sequences. Specifically,

sk =
1
p
N
� (Vk;1; : : : ; Vk;N)T ; (8)

where Vk;j’s (1 � k � K; 1 � j � N) are i.i.d. random variables taking equiprobable
values on f�1g. 1=

p
N normalizes the energy of the spreading sequences.

3.1.1 Reduced-Rank Single Antenna MMSE Receiver

In a single antenna DS-CDMA system, the output of the chip-matched filter is

r =
KX
k=1

Ake
j�kbksk + n: (9)

where Ake
j�k is a complex gain taking into account the channel effects.

Put in matrix form

r = SAb+ n; (10)

where S = (s1e
j�1 ; : : : ; sKe

j�K) is an N � K matrix, A = diagfA1; : : : ; AKg, and b =
(b1; : : : ; bK)

T . The MMSE receiver for user 1 is

c = (S1D1S
H
1 + �2I)�1s1e

j�1 ; (11)
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where S1 = (s2e
j�2 ; : : : ; sKe

j�K), and D1 = diagfA2
2; : : : ; A

2
Kg. The rank D (D � N)

reduced-rank MMSE receiver for user 1 is

cD =
D�1X
m=0

wm

�
S1D1S

H
1 + �2I

�m
s1e

j�1 ; (12)

where the weight vector w = (w0; : : : ; wD�1)
T is chosen to maximize the output SINR and

is given by [11, 16]

w =

2
64

H1 + A2
1H0H0 � � � HD + A2

1HD�1H0

... . . . ...
HD + A2

1HD�1H0 � � � H2D�1 + A2
1HD�1HD�1

3
75
�1 2
64

H0

...
HD�1

3
75 ; (13)

where the (i; j)-entry of the matrix above isHi+j�1 + A2
1Hi�1Hj�1 with

Hm = s
H
1

�
S1D1S

H
1 + �2I

�m
s1: (14)

From the expression above, we see that the optimal weights depend on the realizations
of the spreading sequences. Therefore in a system using long sequences, they need to
be computed and updated symbol to symbol, which hampers real-time implementation.
It is therefore desirable to find a set of suboptimal weights that do not depend on the
spreading sequences while maintaining acceptable performance. The asymptotic values
of the weights in the large system limit seem to be a promising solution. The large system
limit is taken as N and K go to infinity with K=N = �. Using Corollary 1 in [4] and the
results in [21], it can be shown that if the empirical distribution of the diagonal elements
of the matrix D1 converges almost surely (a.s.) to a fixed non-random limit distribution,
then

lim
N;K!1
K
N
=�

s
H
1

�
S1D1S

H
1

�m
s1

a:s:! lim
N;K!1
K
N
=�

1

N
E[Tracef

�
S1D1S

H
1

�mg] = Z �mdG(�); (15)

where G(�) is the limit eigenvalue distribution of S1D1S
H
1 and the convergence is almost

surely. For proof see Appendix C.
Let w1 denote the asymptotic weight vector, from (15) it is readily shown that

w
1 =

2
64
H1

1 + A2
1H

1

0 H
1

0 � � � H1

D + A2
1H

1

D�1H
1

0
... . . . ...

H1

D + A2
1H

1

D�1H
1

0 � � � H1

2D�1 + A2
1H

1

D�1H
1

D�1

3
75
�1 2
64
H1

0
...

H1

D�1

3
75 ; (16)

where

H
1

m =

Z
(�+ �2)mdG(�): (17)

Now we can apply Proposition 1 to obtainH1

m and therefore the asymptotic weights.

7



Proposition 1 requires that the empirical distribution of the received powers of the
interfering users, which are the diagonal elements of D1, converges a.s. to a fixed non-
random limit distribution. Based also on the observation given at beginning of the Section
2, we recall here that in order to verify the a.s. convergence of empirical distribution of
the diagonal elements of D1 to a fixed non-random limit distribution it is enough to verify
that all the moments of the matrix D1 exist, i.e. the limit in the following equation exists

�Dp ,
1

(K � 1)
lim
K!1

E[TracefDp
1g]

and that 8p the normalized trace of the matrix Dp
1 converges a.s. to a non-random limit

given by the moments of D1 i.e.:

1

(K � 1)
lim
K!1

TracefDp
1g

a:s:! �Dp 0 � p <1

Notice also that the received power of each user is a positive random variable with a dis-
tribution function induced by the channel fading. If all the users experience independent
fading, then a sufficient condition for the a.s. convergence of the empirical distribution
of the interfering received powers to a non-random limit is given in [3, Theorem 2.3] in
terms of the diagonal elements of the matrices Dp

1 with 0 � p < 1. It easy to verify that
most cases of practical interest satisfy those conditions. In particular, assuming that all the
users experience i.i.d fading with uniformly bounded transmitted powers, it can be eas-
ily shown that if the common distribution of the users’ fading coefficients is p�integrable
with 0 � p <1, then the the empirical distribution of the received powers converges a.s.
to a non-random limit. Certainly, in all cases, this limit depends on the fading coefficients
distribution and, consequently, it is subject to change if the channel characteristics change
considerably. In practice, this means we need to update the distribution of the received
powers periodically or when we detect a considerable change in it. In the implementation
of the asymptotic reduced-rank receiver, we can use the moments of the empirical distri-
bution of A2

2; : : : ; A
2
K when K is finite to approximate the moments of the limit empirical

distribution of the received powers used in (1), i.e.

E[�m] �
1

K � 1

KX
k=2

A2m
k : (18)

(18) is in fact what we use in the numerical results of this paper.

3.1.2 Reduced-Rank Multiantenna MMSE Receiver

In a multiantenna DS-CDMA system, the output of the chip-matched filter at the lth an-
tenna element is

rl =
KX
k=1

Ake
j�k(l)bksk + nl l = 1; : : : ; L: (19)

In the equation above, we assume that for each user, the received amplitudes at different
antenna elements are the same for simplification. This is valid if the antenna elements
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are close enough to each other so that for a given user, the received powers at different
antenna elements vary little. However, the received phases still vary considerably among
antenna elements because different propagation paths have a much greater impact on the
received phases due to the usually high carrier frequency.

Put in matrix form

r = SAb+ n; (20)

where r = (rT1 ; : : : ; r
T
L)

T is an LN - vector, S = (s1; : : : ; sK) is an (LN) � K matrix, sk =
(sTk e

j�k(1); : : : ; sTk e
j�k(L))T , A = diagfA1; : : : ; AKg, b = (b1; : : : ; bK)

T , and
n = (nT1 ; : : : ;n

T
L)

T . The MMSE receiver for user 1 is

c = (S1D1S
H

1 + �2I)�1s1; (21)

where S1 = (s2; : : : ; sK), andD1 = diagfA2
2; : : : ; A

2
Kg. The rank D (D � LN) reduced-rank

MMSE receiver for user 1 is

cD =
D�1X
m=0

wm

�
S1D1S

H

1 + �2I
�m

s1; (22)

where the weight vector w = (w0; : : : ; wD�1)
T is given by (13), and

Hm = s
H
1

�
S1D1S

H

1 + �2I
�m

s1: (23)

To calculate the limit of Hm as N and K go to infinity, we notice that the situation here
is similar to the situation in 3.1.1, the only difference being that the energy (defined by
Efk � k2g) of s1 and every column of S1 is now L. After taking out the L factor from s1 and
absorbing the L factor of S1 into D1, we have that

H
1

m = L

Z
(�+ �2)mdG(�); (24)

where G(�) is the limit eigenvalue distribution of ~S1(LD1)
~
S
H

1 with ~
S1 = S1=

p
L. Proposi-

tion 2 can be applied to findH1

m and therefore the asymptotic weights (16).

3.1.3 Reduced-Rank Single Antenna LCM Receiver

The single antenna LCM receiver for user 1 is [16]

c = F
�
S1aD1S

H
1a + �2I

�
�1
s1a; (25)

where F = [IN 0], IN is an N �N identity matrix, and

s1a =

�
s1e

j�1

s1e
�j�1

�
;S1a =

�
s2e

j�2 � � � sKe
j�K

s2e
�j�2 � � � sKe

�j�K

�
: (26)

The rank D (D � 2N) reduced-rank LCM receiver for user 1 is [16]
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cD =
D�1X
m=0

wm

�
S1aD1S

H
1a + �2I

�m
s1a; (27)

with the weight vector w = (w0; : : : ; wD�1)
T given by [16]

w =

2
64
H1 � � � HD

... . . . ...
HD � � � H2D�1

3
75
�1 2
64
H1

...
HD

3
75 ; (28)

where

Hm = s
H
1a

�
S1aD1S

H
1a + �2I

�m
s1a: (29)

After taking out the factor of 2 from s1a and S1a

H
1

m = 2m+1

Z
(�+

�2

2
)mdG(�); (30)

where G(�) is the asymptotic eigenvalue distribution of ~S1aD1
~SH1a with ~S1a = S1a=

p
2.

Proposition 3 can be applied to findH1

m and the asymptotic weight vector w1.

3.1.4 Reduced-Rank Multiantenna LCM Receiver

As discussed in 3.1.2, the output of the chip-matched filter in a multiantenna system is

r = SAb+ n: (31)

Similar to the single antenna case, the multiantenna LCM receiver for user 1 is

c = F

�
S1aD1S

H

1a + �2I
�
�1

s1a; (32)

where F = [ILN 0], and

s1a =

�
s1

s
�

1

�
;S1a =

�
s2 � � � sK

s
�

2 � � � s
�

K

�
: (33)

The rank D (D � 2LN) reduced-rank LCM receiver for user 1 is

cD =
D�1X
m=0

wm

�
S1aD1S

H

1a + �2I
�m

s1a; (34)

where the weight vector w = (w0; : : : ; wD�1)
T is given by (28), and

Hm = s
H
1a

�
S1aD1S

H

1a + �2I
�m

s1a: (35)

To calculate the limit of Hm as N and K go to infinity, we notice that the energy (defined
by Efk � k2g) of s1a and every column of S1a is 2L. By following similar arguments in
Section (3.1.2) and (3.1.3), it is easily shown that
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H
1

m = L2m+1

Z
(�+

�2

2
)mdG(�); (36)

whereG(�) is the asymptotic eigenvalue distribution of ~S1a(LD1)
~
S
H

1a with ~
S1a = S1a=

p
2L.

Proposition 4 can be applied to findH1

m and the asymptotic weight vector w1.

3.1.5 Reduced-Rank Multiantenna MMSE Receiver in Line-of-Sight Transmission

In a line-of-sight transmission DS-CDMA system with multiple receive antenna, the out-
put of the chip-matched filter at the lth antenna element is

rl =
KX
k=1

Ake
lj�kbksk + nl l = 0; : : : ; L� 1; (37)

where �k = 2�d cos�k=�, d is the distance between two adjacent antenna elements, �k is
the incident angle of user k, and � is the wavelength of the carrier. Due to the random-
ness in the geographic distribution of users, it is reasonable to assume that �k’s are i.i.d.
random variables uniformly distributed on [0; 2�). Put in matrix form

r = SAb+ n; (38)

where r = (rT0 ; : : : ; r
T
L�1)

T is an LN -vector, S = (s1; : : : ; sK) is an (LN) � K matrix, sk =
(sTk e

0j�k ; : : : ; sTk e
(L�1)j�k)T , A = diagfA1; : : : ; AKg, b = (b1; : : : ; bK)

T , and
n = (nT1 ; : : : ;n

T
L)

T . The MMSE receiver for user 1 is

c = (S1D1S
H

1 + �2I)�1s1; (39)

where S1 = (s2; : : : ; sK), andD1 = diagfA2
2; : : : ; A

2
Kg. The rank D (D � LN) reduced-rank

MMSE receiver for user 1 is

cD =
D�1X
m=0

wm

�
S1D1S

H

1 + �2I
�m

s1 (40)

with the weights given by (13) and

Hm = s
H
1

�
S1D1S

H

1 + �2I
�m

s1: (41)

The asymptotic weights can be obtained by using Proposition 5 in the same way we used
Proposition 2 in 3.1.2.

3.1.6 Reduced-Rank Multiantenna LCM Receiver in Line-of-Sight Transmission

As discussed in 3.1.5, the output of the chip-matched filter in a line-of-sight transmission
DS-CDMA system is

r = SAb+ n: (42)
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Similar to the discussion in 3.1.4, the LCM receiver for user 1 is

c = F

�
S1aD1S

H

1a + �2I
�
�1

s1a; (43)

where F = [ILN 0], and

s1a =

�
s1

s
�

1

�
;S1a =

�
s2 � � � sK

s
�

2 � � � s
�

K

�
: (44)

The rank D (D � 2LN) reduced-rank LCM receiver for user 1 is

cD =
D�1X
m=0

wm

�
S1aD1S

H

1a + �2I
�m

s1a (45)

with the weights given by (28) and

Hm = s
H
1a

�
S1aD1S

H

1a + �2I
�m

s1a: (46)

The asymptotic weights can be obtained by using Proposition 6 in the same way we used
Proposition 4 in 3.1.4.

3.2 Relationships among Asymptotic Eigenvalue Distributions in Var-
ious Cases

In Section 2, the moments of the asymptotic eigenvalue distributions of several classes
of random matrices are shown to be equal. In this section, we study the relationships
among these distributions through the moments. And because the asymptotic output
SINR is a certain integrable function averaged with respect to the asymptotic eigenvalue
distribution, the relationships among them are also characterized.

The multiantenna LCM receiver serves as an example to illustrate the idea. Similar
results on the multiantenna MMSE receiver and the single antenna LCM receiver were
obtained in [8] and [16], respectively, by using free probability theory.

Similar to the result on the single antenna receiver in [16], the output SINR of the
multiantenna LCM receiver is

P1s
H
1a

�
S1aD1S

H

1a + �2I
�
�1

s1a; (47)

where D1 = diagfP2; : : : ; PKg, and Pk = A2
k is the received power of user k at one antenna

element. s1a and S1a are given by (33). We notice that in (47), the energy of s1a and each
column of S1a (defined as E fk � k2g) is 2L. After absorbing the factor L of s1a and S1a into
P1 and D1, and taking the factor 2 of S1a out of the matrix inversion, we have

P1s
H
1a

�
S1aD1S

H

1a + �2I
�
�1

s1a = (LP1)~s
H

1a

�
~
S1a(LD1)

~
S
H

1a +
�2

2
I

�
�1

~s1a; (48)
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where tilded quantities denote the normalized untilded ones. Now we consider a single
antenna MMSE receiver in a DS-CDMA system with processing gain 2LN , number of
users K, noise level �2=2, and received power of user k LPk, its output SINR is

(LP1)s
H
1

�
S1(LD1)S

H
1 +

�2

2
I

�
�1

s1; (49)

where the 2LN -vector sk is the spreading sequence of user k, S1 = (s2; : : : ; sK), D1 =
diagfP2; : : : ; PKg, and Pk = A2

k. All the spreading sequences are normalized. Suppose
the asymptotic eigenvalue distribution of S1(LD1)S

H
1 is G(�), the asymptotic eigenvalue

distribution of ~S1a(LD1)
~
S
H

1a is G�(�), then from Proposition 4Z
�mdG(�) =

Z
�mdG�(�) m = 0; 1; 2; : : : (50)

Denote the distribution density functions of G and G� by g and g�, we haveZ
�m(g(�)� g�(�))d� = 0 m = 0; 1; 2; : : : (51)

So, g � g� is orthogonal to every polynomial, therefore g � g� is zero almost everywhere,
as a result G = G� almost everywhere. From [15]

s
H
1

�
S1(LD1)S

H
1 +

�2

2
I

�
�1

s1 !
Z

1

�+ �2

2

dG(�); (52)

and from a similar argument in the proof of Lemma 4.3 in [15]

~s
H

1a

�
~
S1a(LD1)

~
S
H

1a +
�2

2
I

�
�1

~s1a !
Z

1

�+ �2

2

dG�(�): (53)

Therefore the asymptotic output SINR of the single antenna MMSE receiver with
(K; 2LN; �2=2) is the same as that of the multiantenna LCM receiver with (K;N; �2). Sim-
ilar results hold for the MMSE/LCM receivers in line-of-sight transmission.

Remark: In [8], the output SINR of the multiantenna MMSE receiver with (K;N; �2) and
L antenna elements is shown to be equal to that of the single antenna MMSE receiver with
(K;LN; �2) asymptotically. In that proof, free probability theory was used to obtain the
asymptotic equality. By using the combinatorial techniques provided in the appendices
of this paper, it can be shown that the expected values (with respect to the spreading se-
quences) of the SINR’s of both systems are equal even for K and N finite. For the LCM
receiver, however, since there are conjugate parts in the effective spreading sequences,
from the proof in Appendix B, we need to let K and N go to infinity to make some terms
vanish. Therefore, it is still open whether the expected values (with respect to the spread-
ing sequences) of the SINR’s of both systems (single antenna MMSE with (K; 2LN; �2=2)
and multiantenna LCM with (K;N; �2)) are equal for K and N finite. Since the output
SINR’s are random variables for K and N finite, they themselves are generally not equal
when K and N are finite.
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4 Deriving the Tse-Hanly Formula by Means of the Mo-
ments

By using the Silverstein-Bai theorem [13], it is shown in [15] that the asymptotic output
SINR  of the MMSE receiver in a DS-CDMA system with random spreading satisfies
the following fixed point equation (without loss of generality, the desired user is received
with unit power)

 =
1

�2 +
R

�P

1+P
dF (P )

; (54)

where F (P ) is the limit of the empirical distribution of P2; : : : ; PK as K goes to infinity.
In this section, we give a self-contained proof of (54) using the combinatorial convolution
defined on the incidence algebra of non-crossing partitions. Based on these tools, we
reduce (54) to a combinatorial equality involving the asymptotic moments.

Let G(�) be the asymptotic eigenvalue distribution of S1D1S
H
1 . If G(�) is a com-

pactly supported probability measure on R, its Stieltjes transform is defined as:

m(z) =

Z
1

�� z
dG(�) (55)

which is an analytic function in C n supp(G). By expanding 1
��z

with respect to z, ex-
changing the summation and integration and by analytical extension, (55) can be written
8z 2 C n supp(G) as:

m(z) = �
1

z

1X
k=0

�k

zk
; (56)

where
�k =

Z
�kdG(�) (57)

is given in Proposition 1. Notice that regardless of G(�), C n supp(G) � z 2 C+ = fz 2
C : Im(z) > 0g. Notice that if z 2 C+ then also m(z) 2 C+. To avoid cumbersome negative
powers of �1 we denote g(z) = �m(z), so

g(z) =
1

z
+

1X
k=1

�k

zk+1
=

1X
k=1

�k�1

zk
: (58)

As in Remark 3.3.3 in [19], g(z) has a unique inverse k(�), i.e. � = g(z); z = k(�),

k(�) =
1

�
+

1X
k=0

ak+1�
k; (59)

where ak is a polynomial in �1; : : : ; �k. Thus, from (59) we have:

z = k(g(z)) =
1

g(z)
+

1X
k=0

ak+1g(z)
k; (60)
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or equivalently:

zg(z) =
1X
k=1

�k

zk
=

1X
k=0

ak+1g(z)
k+1: (61)

Finally, from (61) we get the following equality between two power series:

1X
k=1

�kx
k =

1X
k=1

aky
k; (62)

with

x =
1

z
; y =

1X
k=1

�k�1x
k:

Eq. (62) is satisfied when the sequence (a1; a2; : : :) satisfies the following implicit equation
[6]:

�m =
mX
k=1

ak
X

m1+���+mk=m

�m1�1 � � ��mk�1: (63)

The series
1X
k=0

ak�
k is known as the R-transform of the asymptotic eigenvalue distribution,

G(�), and the series coefficients fakg are known as the free cumulants of G(�) [19, 14]. In
the following we will prove an explicitly expression for the free cumulants fakg:

ak = Ef�kg�; (64)

where � is a random variable with cumulative distribution F (P ) as defined in Proposition
1. The proof of (64) requires tools from set partition theory. Our treatment here is very brief;
for more details please consult [1] and [14].

Definition 1: Let m be a natural number. A partition �
4

= fV1; : : : ; Vkg of the set f1; : : : ; mg
is a decomposition of f1; : : : ; mg into disjoint and non-empty sets Vi such that

Sk

i=1 Vi =
f1; : : : ; mg. The elements Vi are called the blocks of the partition �. We will denote the
set of all partitions of f1; : : : ; mg by P(m). This set becomes a lattice if we introduce the
following partial order (called refinement order): � � � if each block of � is a union of
blocks of �. We will denote the smallest and the biggest elements of P(m) — consisting of
m blocks and one block, by:

0m = f(1); (2); : : : ; (m)g; 1m = f(1; 2; : : : ; m)g (65)

Definition 2: A partition � 2 P(m) is a crossing partition if there exist four numbers
1 � i < k < j < l < m such that i and j are in the same block V , k and l are in the same
block V 0 and V 6= V 0. The set of all non-crossing partitions in P(m) is denoted by NC(m),
i.e:

NC(m)
4

= f� 2 P(m)j � non� crossingg (66)
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Define interval in NC(m) as the following set [�; �] = f� 2 NC(m)j � � � � �g 8� �
� 2 NC(m). Each of these intervals can be decomposed into a product of lattices of non-
crossing partitions, i.e. for all �; � 2 NC(m) with � � � there exist canonical natural
numbers k1; k2; : : : ; such that

[�; �] �= NC(1)k1 � NC(2)k2 � � � � (67)

For example we have:

[f(1); (2); (3); (4); (5); (6); (7); (8)g; f(1; 2; 3); (4; 5); (6); (7; 8)g]NC(8) �=
�= [f(1); (2); (3)g; f(1; 2; 3)g]NC(3) � [f(4); (5)g; f(4; 5)g]NC(2)

�[(6); (6)]NC(1) � [f(7); (8)g; f(7; 8)g]NC(2) �=
�= NC(1)� NC(2)2 � NC(3)

Having this factorization property at hand it is quite natural to define a multiplica-
tive function f (for non-crossing partitions) corresponding to a sequence (a1; a2; : : :) of
complex numbers by requirement that:

f(�; �)
4

=

�
ak11 a

k2
2 � � �
0 whenever � � �

(68)

if [�; �] has a factorization as above. We use the notation f ! (a1; a2; : : :) to denote the
dependence of f on the sequence (a1; a2; : : :). In particular we have that f(0m; 1m) = am

Definition 3: The (combinatorial) convolution (� � �) of f and g defined as in (68), ( f � g),
is equal to:

( f � g)
4

=
X

� 2 NC(m)
� � � � �

f(�; �) g(�; �) for � � � 2 NC(m): (69)

Now we have the machinery to prove (54). According to Proposition 1:

�m =

mX
k=1

�k
X

m1+���+mk=m

c(m1; : : : ; mk) � Ef�m1g � � �Ef�mkg

=
X

m1+���+mk=m

1�k�m

c(m1; : : : ; mk) �Qm1
� � �Qmk

;
(70)

where Qmj
= Ef�mjg�. Define the following multiplicative functions on the lattice of

non-crossing partitions:

- L ! (�1; �2; : : :) as the multiplicative function on the lattice of non-crossing partitions
corresponding to the moments �m of the random matrix SDSH ,

- Q ! (Q1; Q2; : : :) as the multiplicative function on the lattice of non-crossing partitions
corresponding to the sequence Qm.
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It is easy to see that:

�m = L (0m; 1m)

Q (�; �) = Qk1
1 Q

k2
2 � � � iff [�; �] �= NC(1)k1 � NC(2)k2 � � � � (71)

From Theorem 2 in Appendix A, we know that c(m1; : : : ; mk) is the number of non-
crossing partitions of m into k disjoint sets, such that the numbers of elements in these
sets are m1; : : : ; mk. As a consequence, from (69) and (71), (70) can be rewritten as

�m =
X

� 2 NC(m)
0m � � � 1m

Q(0m; �) zeta(�; 1m) = Q � zeta (72)

where zeta is the zeta function defined as in [1, 14]:

zeta(�; �) =
�

1; � � �

0; otherwise (73)

By taking into account the non-crossing character of the involved partition, the relation
L = Q � zeta can be written more concretely in a recursive way as (�0 = 1) [14]:

�m =
mX
k=1

Qk

X
i1; : : : ; ik � 0

i1 + � � �+ ik = m

�i1�1 � � ��ik�1: (74)

Comparing Eq. (63) with Eq. (74) it follows immediately that ak = Qk = Ef�kg�, as we
wanted to show. As a consequence,

k(g(z)) =
1

g(z)
+

1X
k=1

Ef�kg�(g(z))k

= �
1

m(z)
+

1X
k=1

Ef�kg�(�1)k(m(z))k

= �
1

m(z)
+

Z
�P

1 + Pm(z)
dF (P ):

(75)

For (75) we have used the fact that for z 2 C+:
1X
k=1

Ef�kg�(�1)kzk =

Z
�P

1 + Pz
dF (P ) (76)

which can be easily shown by analytic extension expanding 1
1+Pz

with respect to z and
exchanging the summation and the integration with respect to F (P ). Since k(g(z)) = z,
so:

m(z) =
1

�z +
R

�P

1+Pm(z)
dF (P )

: (77)
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Therefore, via the asymptotic moments we obtain the same result originally shown by
Silverstein and Bai [13].

Using Corollary 1 in [4] and the results in [21] , it can be shown that if the empirical
distributions of the diagonal elements of the matrix D1 converges almost surely (a.s.) to a
fixed distribution, then as N and K go to infinity with K=N = �, the output SINR of the
MMSE receiver for user 1, , converges almost surely for N !1 to :

 = s
H
1 (S1D1S

H
1 + �2I)�1s1

a:s:! lim
N!1

1

N
E
�
Trace

�
(S1D1S

H
1 + �2I)�1

	�
: (78)

Since

lim
N!1

1

N
E
�
Trace

�
(S1D1S

H
1 + �2I)�1

	�
= lim

z!��2

Z
1

�� z
dG(�) = lim

z!��2
m(z) (79)

letting z = ��2 in (77), (54) is obtained.

5 Numerical Results

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

4

6

8

10

Signal−to−Noise Ratio (dB)

O
ut

pu
t S

IN
R

 (
dB

)

Reduced−Rank MMSE
Asymptotic Reduced−Rank

Figure 1: Output SINR vs. input signal-
to-noise ratio for two reduced-rank single
antenna receivers.
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Figure 2: Output SINR vs. input signal-
to-noise ratio for multiantenna MMSE re-
ceivers.

In this section, we compare the performance of four receivers: (i) the asymptotic
reduced-rank MMSE/LCM receiver that uses the asymptotic weights; (ii) the reduced-
rank MMSE/LCM receiver that uses the exact optimal weights; (iii) the full-rank MMSE-
/LCM receiver; (iv) the asymptotically equivalent single antenna MMSE receiver with
enlarged processing gain and possibly reduced noise level. In all the results, N = 32,
K = 25, L = 2 (number of receive antenna elements), D = 5 (number of stages of the
reduced-rank receiver) are used. For simplification, we simulate the case in which the re-
ceived powers of the interfering users are equal and are 5 dB above the desired user. This
corresponds to power-controlled interferers and makes the desired user to operate in a
relatively challenging environment. In the case of single antenna receivers, the horizontal
axis represents the input signal-to-noise ratio P1=�

2 in dB. For multiantenna receivers, the
horizontal axis is LP1=�

2, taking into account the total received power of the desired user.
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Figure 1 shows the performance of two reduced-rank single antenna MMSE re-
ceivers. The upper curve is the output SINR of the reduced-rank MMSE receiver that uses
exact optimal weights, and the lower curve is for the asymptotic reduced-rank receiver
that uses asymptotic weights. From the figure we can see that the later lies within 1 dB
from the former. And we found that (not shown in the figure) if N > 80, the performance
loss due to using asymptotic weights will be less than 0:5 dB.

Figure 2 shows the performance of the multiantenna MMSE receivers. From the
figure we can see that we lose about 1 dB in SINR by using asymptotic weights. And
as predicted, the performance of the full-rank MMSE receiver is very close to that of the
asymptotically equivalent single antenna MMSE receiver with processing gain LN . We
also found that (not shown in the figure), if LN (the effective processing gain) is raised to
above 100, the penalty of using asymptotic weights will be less than 0:5 dB, and if D � 8,
the performance gap between the reduced-rank receiver and the full-rank one will be less
than 0:5 dB.
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Figure 3: Output SINR vs. input signal-
to-noise ratio for single antenna LCM re-
ceivers.
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Figure 4: Output SINR vs. input signal-
to-noise ratio for multiantenna LCM re-
ceivers.

Figure 3 illustrates the performance of the single antenna LCM receivers. We ob-
serve that the penalty due to using asymptotic weights is within 1.25 dB. And as pre-
dicted, performance of the full-rank LCM receiver is very close to that of the asymptoti-
cally equivalent single antenna MMSE receiver with processing 2N and noise level �2=2.
We found that (not shown in the figure) if N > 60, the performance loss due to using
asymptotic weights will be less than 0:5 dB, and if D � 8, the performance gap between
the reduced- rank receiver and the full-rank one will be less than 0:5 dB. For comparison
purposes, the output SINR of the reduced-rank MMSE receiver in Figure 1 is also shown
here. We can see the significant performance gain obtained by LCM processing.

Figure 4 illustrates the performance of the multiantenna LCM receivers. From the
figure we see that the performance loss due to using asymptotic weights is very small
(about 0:5 dB). Additionally the performance difference between the full-rank LCM re-
ceiver and the asymptotically equivalent single antenna MMSE receiver with processing
2LN and with noise level �2=2 is also very small, almost indistinguishable. This is be-
cause the effective processing 2LN = 128, which is large enough to guarantee sufficient
convergence. By comparison of Figures 2 and 4, we can see that the output SINR in Figure

19



4 is 4 � 5 dB higher than those in Figure 2. This confirms the analytical result given in
(53) that the LCM receiver asymptotically reduces the number of interferers and the noise
level by half.
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Figure 5: Output SINR vs. input signal-to-
noise ratio for MMSE receivers in line-of-
sight transmission.
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Figure 6: Output SINR vs. input signal-
to-noise ratio for LCM receivers in line-of-
sight transmission.

Figure 5 illustrates the performance of the MMSE receivers in line-of- sight trans-
mission. We see that Figure 5 quite resembles Figure 2. This agrees with our analytical
result that their performances are asymptotically equal. All observations in Figure 2 can
be directly applied here.

Figure 6 illustrates the performance of the LCM receivers in line-of- sight transmis-
sion. Again we see that Figure 6 resembles Figure 4. This agrees with our analytical result
that their performances are asymptotically equal. Observations in Figure 4 can again be
applied here.

6 Conclusion

In this paper, we obtain explicit expressions for the asymptotic eigenvalue moments
of several classes of infinite random matrices that arise in multiuser detection in DS-
CDMA system with random spreading. The results are used in the design of the asymp-
totic reduced-rank MMSE/LCM receivers that use the asymptotic values of the optimal
weights. Numerical results show that the penalty in the output SINR due to using the
asymptotic weights in place of the exact optimal weights is about 1 dB for reasonably
large processing gain, e.g. 32. For larger processing gain, say 80 or larger, the perfor-
mance loss is less than 0:5 dB. The asymptotic reduced-rank receivers are desirable in
real-time implementation of systems using long sequences because they do not depend
on realizations of the spreading sequences. The equivalence of the asymptotic moments
in these cases is used to obtain the asymptotic equality of the output SINR’s of these re-
ceivers to that of the single antenna MMSE receiver with enlarged processing gain and
possibly reduced noise level. The asymptotic equality is confirmed by numerical results.
An explicit expression for the free cumulants of the asymptotic eigenvalues distribution
of several classes of infinite random matrices is given from which the Tse-Hanly formula
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is proved. The technique used for finding the free cumulants of our infinite random ma-
trices, has independent interest: in fact it permits, in the more general case, to find, using
the free cumulants property of some suitable random matrix [19], an explicit expression
for the moments of random matrices with more complex structure.

Appendix

A Proof of Proposition 1

Suppose that

sk =
1
p
N
� (Vk;1; : : : ; Vk;N)T ; (80)

where Vk;j’s are i.i.d. random variables that take equiprobable values on f�1g. Then

Trace
�
(SDSH)m

	
(81)

= Trace

( 
KX

i1=1

Pi1si1s
H
i1

!
� � �

 
KX

im=1

Pimsims
H
im

!)
(82)

= Trace

(
KX

i1;:::;im=1

Pi1 � � �Pim � si1s
H
i1
� � � sims

H
im

)
(83)

= Trace

(
KX

i1;:::;im=1

Pi1 � � �Pim � s
H
im
si1 � � � s

H
im�1

sim

)
(84)

=
1

Nm

KX
i1;:::;im=1

NX
j1;:::;jm=1

Pi1 � � �Pim � V
�

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm: (85)

where Pi = A2
i . So,
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�
Trace
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(SDSH)m
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(86)

=
1

Nm+1

KX
i1;:::;im=1

NX
j1;:::;jm=1

Pi1 � � �Pim � E
�
V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm

�
: (87)

We then investigate all the possible ways to partition indices i1; : : : ; im into k dis-
joint sets for 1 � k � m. Indices in the same set keep identical in the summation and
indices in different sets keep distinct in the summation. Suppose for a given partition of
i1; : : : ; im into k disjoint sets such that numbers of elements in the sets are m1; : : : ; mk, then
this partition contributes a non-zero term Ef�m1g � � �Ef�mkg ��k to

R
�mdG(�) if there ex-

ists a partition of j1; : : : ; jm into m � k + 1 disjoint sets such that in the following figure,
every ordered pair in the upper row is matched with exactly one ordered pair in the lower
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row, and every ordered pair in the lower row is matched with exactly one ordered pair in
the upper row.

(i1; j1) (i2; j2) . . . (im; jm)

(i1; j2) (i2; j3) . . . (im; j1)

Two ordered pairs are matched iff the first indices in both of them are in the same set, and
so are the second indices. The matching above ensures that no random variable appears
alone in the expectation, which would make the expectation zero. If such a partition of
j1; : : : ; jm exists, we call it a good partition for the given partition of i1; : : : ; im. Therefore,
from the discussion above,

R
�mdG(�) is the sum of all the terms

c(m1; : : : ; mk) � E[�m1 ] � � �E[�mk ] � �k; (88)

for all m1 + � � �+mk = m and all 1 � k � m. The coefficient c(m1; : : : ; mk) is the solution
to the following combinatorial problem:

Theorem 1: Among all the partitions of i1; : : : ; im into k disjoint sets such that the cardi-
nalities of these sets are m1; : : : ; mk (totally there are m!

m1!���mk!�f(m1;:::;mk)
such partitions, where

f(m1; : : : ; mk) is defined in Section 2), the coefficient c(m1; : : : ; mk) in (88) is the number of par-
titions such that there exists a good partition of j1; : : : ; jm into m� k + 1 disjoint sets for each of
them.

Another combinatorial problem the solution of which is c(m1; : : : ; mk) is proposed
in [20], basically it is:

Theorem 2: Consider m balls arranged on a circle, numbered from 1 to m clockwise. Among
all the partitions of the m balls into k disjoint sets, such that the cardinalities of these sets are
m1; : : : ; mk, the coefficient c(m1; : : : ; mk) in (88) is the number of non-crossing partitions. A
partition is called crossing if there exist two sets A and B and for some a; b 2 A and c; d 2 B such
that the segment drawn from a to b and the segment drawn from c to d cross.

We use Theorem 2 to obtain c(m1; : : : ; mk), while the concept of mutually good par-
titions defined in Theorem 1 is used in the proof of extensions to Proposition 1. In what
follows, we prove that

c(m1; : : : ; mk) =
m!

(m� k + 1)! � f(m1; : : : ; mk)
: (89)

In Theorem 2, sets that contain the same number of elements are considered indistin-
guishable. That is to say, if for some partition two sets (denoted by A and B) both contain
p balls, then we consider the partition obtained by switching balls in A and B the same as
the original one.

Here we first consider the case in which these sets are distinguishable and prove
that the number of non-crossing partitions is given by

m!

(m� k + 1)!
: (90)
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To make the sets distinguishable, we number them from 1 to k. The caridinality of Si is mi

(1 � i � k). Now we select a ball, denoted by b1, from the m balls, then we select another
ball, denoted by b2, from the remaining m � 1 balls, and so on until we select bk�1. It is
easy to see that there are m!=(m� k + 1)! ways to make the selection. Next, we describe a
procedure that generates a non-crossing partition from any such selection. Then we prove
that non-crossing partitions generated from different selections must also be different,
and for each non-crossing partition, there must exist a selection that generates it.

(i) Suppose b1; : : : ; bk�1 are selected as in Figure 7 (without loss of generality, we
assume that b2 is located after b1 on the circle, and so on.) Because m1 + � � � + mk = m,
there must exist i such that there are at least mi balls between bi and bi+1, with bi included
and bi+1 excluded. We assign the mi balls starting from bi (bi included) to set Si. Then we
take away the already assigned mi balls from the circle. Now we have a smaller circle of
m�mi balls with k�2 selected. Then for the same reason, there exists j such that there are
at leastmj balls between bj and the next selected ball after bj , with bj included and the next
selected ball after bj excluded. We then assign mj balls starting from bj to set Sj . Then the
already assigned mj balls are taken away from the circle. This procedure can be repeated
until the k�1 selected balls are used up. At that stage, we have m�m1�� � ��mk�1 = mk

balls left, and we assign them to set Sk.
Since at each stage of the procedure described above, we always assign a continu-

ous block of balls to a set, it is readily shown by induction that a partition generated by
this procedure is non-crossing.

1b

1-kb

3b

2b

.
. .

.
.

Figure 7:

1b

'

1b

.
. .

.
.

.
.

.

Figure 8:

(ii) Here we prove that two different selections of balls, say b1; : : : ; bk�1 and
b01; : : : ; b

0

k�1, generate different partitions. We prove this by means of contradiction. Sup-
pose that bi and b0i are different shown as in Figure 8, and the two selections generate the
same partition. Now we consider the balls assigned to set Si on the original circle of m
balls. According to the procedure in (i), we know that on the original circle, the mi balls
in Si consist of several continuous blocks of balls, and both bi and b0i must be the first (in
clockwise direction) ball of the block they belong to. From the procedure in (i), for the first
set of selected balls, we go clockwise from bi when we assign balls to Si. Since b0i 2 Si, b0i
is reached. Similarly, for the second set of selected balls, bi is reached as we go clockwise
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from b0i to assign balls to Si. So, at the stage that we assign balls to Si, we go clockwise
from bi and returned to bi again (shown in Figure 8). That means, all the unassigned balls
are traversed and assigned to Si. However, this is a contradiction because after all the
selected balls are used up, we still have to have mk unassigned balls left for Sk. Therefore
we proved that different selections generate different partitions.

(iii) Here we prove that for every non-crossing partition, there exists a set of k � 1
selected balls that generates it. First we introduce the following lemma which is proved
at the end of Appendix A.

Lemma: For a given non-crossing partition, there exists a set Si such that all the balls in Si form
a continuous block on the original circle.

Suppose that Si is such a set, we select the first ball (in clockwise direction) of Si as
bi. Then we take away Si from the circle. Now we have a partition of m � mi balls into
k � 1 disjoint sets which is non- crossing. The lemma above can be applied again. The
same procedure can be repeated until k � 1 balls are selected. It is easy to verify that this
set of selected balls indeed generates the same partition that we start with.

From the discussion in (i), (ii), and (iii), a one-to-one and onto mapping from the
selections of k� 1 balls to the non-crossing partitions has been established. Therefore, the
number of non-crossing partitions is given by

m!

(m� k + 1)!
(91)

when sets are distinguishable.
If instead, sets are considered indistinguishable, the number of non-crossing parti-

tions will be reduced. This is because we are free to switch balls in sets that contain the
same number of balls and still get the same partition. For example, the partition does not
change no matter S1 = fa; bg and S2 = fc; dg or S2 = fa; bg and S1 = fc; dg. It is readily
shown the number of non-crossing partitions is reduced by a factor f(m1; : : : ; mk) and is
given by

m!

(m� k + 1)! � f(m1; : : : ; mk)
: (92)

The factor f(m1; : : : ; mk) makes the sets of the same size indistinguishable by mix-
ing up these sets.

Proof of the Lemma: We pick up any set from the partition, if it consists a single continu-
ous block (such a set is called a continuous set), the proof ends. If it consists of at least two
separate continuous blocks, we pick up any two of them (denoted by Block 1 and Block
2, shown as in Figure 9). If there is a continuous set between x1 and x2 (with x1 and x2
included), the proof ends. If none of the sets between x1 and x2 is continuous, we pick up
any set between x1 and x2 and consider any two blocks that belong to this set (denoted
by Block 3 and Block 4, as shown in Figure 10). The same reasoning can be applied when
we further consider sets between y1 and y2. This procedure must stop after finite number
of steps. A continuous set is found when the procedure stops. The lemma is therefore
proved.
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B Proof of Proposition 4

For simplicity of notation, we prove Proposition 4 only for the equal received power case.
That is, D is assumed to be an identity matrix. The proof in the general unequal received
power case can be obtained by incorporating the corresponding treatment in the proof for
Proposition 1. As in the proof of Proposition 1,Z

�mG(�)d� = lim
N;K!1
K
N
=�

1

N
� E
�
Trace

��
SS

H
�m	�

; (93)

where G(�) is the limit eigenvalue distribution of SSH as K, N go to infinity with K=N =
�. Denote

sk =
1
p
N
� (Vk;1; : : : ; Vk;N)T ; (94)

then
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= Trace
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= Trace
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= Trace
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im
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=
1

Nm

KX
i1;:::;im=1

NX
j1;:::;jm=1

V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm: (99)

So,

1

N
� E
�
Trace

�
(SSH)m

	�
(100)

=
1

Nm+1

KX
i1;:::;im=1

NX
j1;:::;jm=1

E
�
V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm

�
: (101)

Now for a given partition of i1; : : : ; im into k (1 � k � m) disjoint sets, if there exists
a good partition of j1; : : : ; jm into m� k + 1 disjoint sets, then

V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm (102)

is made into the product of m modulo squares of random variables. Since the modulo
square of each random variable is 1, we get

E
�
V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm

�
= 1: (103)

Eq. (103) holds for every 2m-tuple that (i1; : : : ; im; j1; : : : ; jm) takes values on. Let us recall
that indices in the same set keep identical and indices in different sets keep distinct in the
summation

PK

i1;:::;im=1

PN

j1;:::;jm=1, so there are totally

1

Nm+1
�K � � � (K � k + 1) �N � � � (N �m + k) (104)

2m-tuples that (i1; : : : ; im; j1; : : : ; jm) take values on. Since each of them contribute 1, the
total contribution of the two mutually good partitions is (104). And the limit is

lim
N;K!1
K
N
=�

1

Nm+1
�K � � � (K � k + 1) �N � � � (N �m + k) = �k: (105)

From the proof of Proposition 1, we know that the two given mutually good parti-
tions also contribute �k under the i.i.d. assumption there. Also from the proof of Propo-
sition 1, we know that all non-mutually-good partitions contribute zero to
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1

N
� E
�
Trace

�
(SSH)m

	�
: (106)

In what follows, we prove that this again holds true (at least asymptotically) here.
Suppose the partition of i1; : : : ; im into k disjoint sets and the partition of j1; : : : ; jm

into m� k + 1 disjoint sets are not mutually good. Then there is some factor in

V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm (107)

that appears alone. Without loss of generality, we assume it is Vi1;j1 . This means, for every
other factor in the product, V �

im�1;jm
for example, either im�1 and i1 are not in the same set,

or jm and j1 are not in the same set.
For the given partition of i1; : : : ; im, suppose that iu (1 � u � m) is in the same

set as i1 (this means iu and i1 keep identical in the summation). We consider factors Viu;ju
and V �

iu;ju+1
. Since Vi1;j1 is left unmatched and i1 and iu are in the same set, j1 and ju must

belong to different sets (this means j1 and ju keep distinct in the summation), and so must
j1 and ju+1 belong to different sets. There are two cases. Case (i):

(i.a) For Viu;ju, then Viu;ju = V �

i1;j1
only happens when ju = j1 + L �N 0 (when j1 � L �N 0)

or ju = j1 � L �N 0 (when j1 > L �N 0). Restricting that ju = j1 � L � N 0 significantly
reduces the total number of 2m-tuples that (i1; : : : ; im; j1; : : : ; jm) take values on. For
example, if we only require that ju 6= j1, then the number of 2-tuples that (j1; ju) take
values on is N(N � 1). However, if we restrict that ju = j1�L �N 0, then the number
of 2-tuples that (j1; ju) take values on is N . Therefore, the number of 2m-tuples is
not large enough to survive the 1=Nm+1 in (101) when we take the limit.

(i.b) Then we consider the case such that Viu;ju 6= V �

i1;j1
. In this case, either (1) the random

phase of Vi1;j1 is not going to be cancelled, or (2) the random chip value of Vi1;j1 is
not going to be made into square. Since they are independent of everything else, the
expectation

E
�
V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm

�
(108)

can be decomposed into the product of the expectation of the random phase or the
random chip value of Vi1;j1 and the expectation of everything else. From the fact that
the expectation of the random phase and the random chip value is zero, we get

E
�
V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm

�
= 0: (109)

Case (ii):

(ii.a) For V �

iu;ju+1
, then V �

iu;ju+1
= V �

i1;j1
only happens when ju+1 = j1. But this is not possible

because ju+1 and j1 are always distinct.

(ii.b) Then we consider the case that V �

iu;ju+1
6= V �

i1;j1
. The discussion is similar to (i.b).
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Therefore from (i) and (ii), we know that contribution from non-mutually-good par-
titions is again always zero, and Proposition 4 is proved.

The proofs of Propositions 2, 3, 5 and 6 can be obtained following methods similar
to those used in the proof of Proposition 4. Indeed, we notice that the classes of the
matrices defined Proposition 2, 3, 5 and 6 can be considered as special cases of that defined
in Proposition 4.

In Proposition 2, the matrix S with columns given by (3) is just a sub-block of
the matrix in Proposition 4 obtained by considering only the first LN0 first rows. And
all discussion regarding the mutually good partitions in the proof of Proposition 4 can
be repeated for Proposition 2; the difference between the two is the non-mutually-good
partition. In Proposition 2, Viu;ju = V �

i1;j1
as discussed in case (i.a) will not happen. So

according to (i.b) we have that:

E
�
V �

im;j1
Vi1;j1 � � �V

�

im�1;jm
Vim;jm

�
= 0: (110)

The discussion in Case (ii) still holds true.
Regarding Proposition 3, it is simply a special case of Proposition 4 without se-

quence repetitions.
Regarding Propositions 5 and 6, we notice that the only difference between them

and Propositions 2 and 4 is that in Propositions 5 and 6 the repeated sequences are mul-
tiplied by phases that are integer multiples of one fundamental uniformly distributed
phase �k on [0; 2�) (see Eq. (6) and Eq. (7) ), while in Proposition 2 and 4 they are multi-
plied by independent and uniformly distributed phases f�k;lgLl=1 (see Eq. (3), and Eq.(5)).
According to the distribution of �k, and from the fact that in the computation of the mo-
ments of the matrices only the average of mixed products of the entries of the matrices is
involved, the discussion of the Case (i) and (ii) is again applicable.

C Proof of Equation 15

To begin we use Corollary 1 in [4] to show that as N;K ! 1 while K=N = � is kept
constant:

s
H
1

�
S1D1S

H
1

�m
s1 �

1

N
Tracef

�
S1D1S

H
1

�mg a:s:! 0

To apply Corollary 1 in [4] we have condition on S1D1S
H
1 and we use the fact that s1 and

S1D1S
H
1 are mutually statistically independent.
Next, observing that the empirical distribution of the diagonal elements of the ma-

trix D1 converges almost surely (a.s.) to a fixed non-random limit distribution, we apply
the results given in [21]:
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Then we have established that: sH1

�
S1D1S

H
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�m
s1 converges almost surely to:
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.

28



References

[1] G. E. Andrews, The Theory of Partitions. Cambridge Mathematical Library, Cam-
bridge, 1984.

[2] K. Dykema, ”On Certain Free Product via Extended Matrix Model”, Journal of Func-
tional Analysis, Vol. 112, pp. 31-60, 1993.

[3] J.L. Doob, Stochastic Process, Wiley Classic Library Edition, New York, 1990.

[4] J.S. Evans and D. Tse, ”Linear Multiuser Receivers for Multipath Fading Channels”,
IEEE Transactions on Information Theory, Vol. 46 6, pp. 2059-2078, September 2000.

[5] V.L. Girko, Theory of random determinants, Kluwer Academic Publishers, Boston 1990.

[6] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic
Press, New York, 1980.

[7] A. J. Grant and P. D. Alexander, ”Random sequence multisets for synchronous code-
division multiple- access channels”, IEEE Transactions on Information Theory, 44(7), pp.
2832-2836, November 1998.

[8] S. V. Hanly and D. N. C. Tse, ”Resource Pooling and Effective Bandwidths in CDMA
Networks with Multiuser Receivers and Spatial Diversity”, IEEE Transactions on In-
formation Theory, 47(4), pp. 1328-1351, May 2001.

[9] F. Hiai and D. Petz, ”Asymptotic freeness almost everywhere for random matrices”,
Acta Sci. Math. (Szeged), Vol. 66, pp. 801-826, 2000.

[10] M. L. Honig and W. Xiao, ”Performance of reduced-rank linear interference suppres-
sion for DS- CDMA”, IEEE Transactions on Information Theory, 47(5), pp. 1928-1946,
July 2001.

[11] S. Moshavi, E. G. Kanterakis, and D.L. Schilling, ”Multistage linear receivers for DS-
CDMA systems”, International Journal of Wireless Information Networks, 39(1), pp.1-17,
Jannuary 1996.
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