1SIT2002, Lausanne, Switzerland June 30-July 5, 2002

Statistical analysis of the Capacity of MIMO Frequency selective
Rayleigh Fading Channels with arbitrary number of inputs and outputs

Anna Scaglione
School of Electrical & Computer
Engineering, Cornell University

Ithaca, NY 14853, USA
e-mail: anna@ece.cornell.edu

Abstract — antennas. We assume a digital link with linear modulation so that the
The classic problem of maximizing the information rate over vectorx(t) is related to the (coded) symbol vectojn] by
parallel Gaussian independent sub-channels with a limit on the
total power leads to_t_he eleganf[ closed form water-filling solution. X () = > x[n]gr (t — nT), 1)
In the case of multi-input multi-output MIMO frequency selec-
tive channel the solution requires the derivation of the eigenvalue
decomposition of the MIMO frequency response which, for every Wheregr (t) is the transmit pulse. Correspondinghyt) = y(t) +
frequency bin, have generalized Wishart distribution. This paper (%) is the receivedVz x 1 vector which contains the channel output
shows the methodology used to derive the statistics of eigenvaluesY (1) and additive noise(¢). For a linear (generally time-varying)
and eigenvectors and applies this methodology to the derivation channel, the input-output (I/O) relationship can be cast in the form of
of the average channel Capacity and of its characteristic func- an integral equation

n=—oo

tion. Simple expressions are derived for the case of uncorrelated AR A
Rayleigh fading and an arbitrary finite number of transmit and y(t) = gr(t — 0)H(0, 7)X(0 — 7)drdo.  (2)
receive antennas. T
Keywords —Information Theory and Statistics where gr(t) is the impulse response of the lowpass receive filter
(usually a square-root raised cosine filter) matched to the transmit
I. INTRODUCTION filter gr(t), and the(k, [)th entry of matrixE (0, 7) is the impulse

This paper is concerned with the derivation of the statistics of the-Ponse of the channel between tith transmit and the-th re-

channel Capacity of a MIMO frequency selective system. This taggsl\;%rz?:éennas. Introducing the discrete-time time-varying impulse

requires the non trivial step of deriving the joint statistics of the eigen- 7 7
values of the random MIMO frequency response. The contribution Il
this paper is twofold: 1) the condensed review on the key tools alr?gk’n} T e H(0, 7)gr (0—7—(k—n)T)gr(kT—0)drdd,

results in the study of complex random matrices, 2) the derivation (3)

of the channel Capacity and of its characteristic function. As pase can write the vector of received sampyds] := y(kT") as

of our overview on the random matrix analysis, in Section Ill we >

will present the rules oéxterior differential calculusvhich is used ylk] = H[k, k — n]x[n]. (4)

to compute the Jacobian of matrix decompositions and perform in- ne—oo

tegration over matrix groups. Contrary to other authors, which have ) .

provided asymptotic results for similar problems [see e.g. [L1]] tEthe channelH[k, n] is causal and has finite memoty we can

analysis developed in this paper applies for an arbitrary finite nuiffrite _tl_qe /o relatl_onshlp (4) as a finite |_|near system of equations.

ber of inputs and outputs and paves the road for the derivation%l?ec'f'ca”y’ stacklngP': K+L Fransmlt snapshots 'nBNT_ x

other performance measures which depend on the channel eigenb €SO %: vee([X[iP], ..., X[iP + P —1]}) and K received

ues. These results are useful especially in the context of Space-TiaPShots in &/ Ng x 1 vectory; , vee([y[iP + L], ..., y[iP +

coding [12]-[9], where the number of inputs and outputs is natural_r?/ — 1)), V\_/hereyi starts fro_m theLth array snapshot so that the

limited to a few elements. Our MIMO channel is frequency selectivgfter‘bIOCk interference (IBI) is not considered, we have

thus our setting is analogous to the one in [10]. y, = Hxi, (5)
Notation: Boldface letters are vectors (lower case) or matrices

(upper case). Ther(A), |A], A(A) are the trace, determinant andvhereH is anNgM x N P block-Toeplitz matrix:

eigenvalues ofA, a = wvec(A) is formed stacking vertically the o H[L] - H[] 0 0 1
columns of A. Continuous time signals vectors are likét) dis- .
crete time vector sequences likgn]. Sequences of vectors ob- H— E o H[I] --- H[0 : g
tained by stacking consecutive blocks, suchagas= [a[iM], ..., o 0

a[iM + M — 1]], are characterized by a suffix. To manipulate
blocked matrices we introduce vectors of indekes: (k1, ..., km)
and the notatio’\[k] , (Alki]7,..., Alkn]D)T.

RMxKP

Assuming that the Gaussian additive noise is spatially and temporally
Il. SYSTEM MODEL white, space-time OFDM will convert our frequency selective MIMO
system into a set oK parallel independent MIMO systems. In fact,

The system considered ha§ transmit andN'y receive antennas. ¢ e channel matris is sandwiched between the two matrices

The baseband equivalent transmitted signal is the vectoy := -
(z1(t),...,zn. ()T of complex envelopes emitted by the transmit Er , (W x @ I nyxny) , Er » (WE® Ingxng)  (7)



whereW g1 x is an extended K + L) x K IFFT matrix, i.e., Cartan’s exterior differential calculus [3] is built around the obser-
k(n )

{W k}im = R 0,...,K—1landn =0,...,pP—1 Vvation that, if we do consider the sign in the Jacobian, products of
with a proper phase shift that creates the so called cyclic prefix, ifferentialsdzdy behave asiz A dy: this can be easily observed
W g isthe K x K IFFT matrix, i.e.{W g }x.. := exp(j2r/Kkn) introducing a dummy transformation(u, v),y(u,v) and realizing
k=0,...,K—landn =0,..., K —1, then similar to what happen thatdzdy = [0(z,y)/d(u,v)|dudv equals0 for u = v = z and

in the scalar case, the equivalent channel is: equal;—dydx for u = y_andv = The rules of exterior dif-
. L ferential calculus are derived applying Grassman algebra to 1-forms
H ., ErHEr =diag(H[d]), d, (0,...,L), such asdz. There is an axiomatic definition of theoperator and,

whereH[k] is the MIMO transfer function at theth frequency bin: N particular,d(r-form) = (r + 1)-form andd(dx) = 0 (Poincag
< Lemma). These rules are systematic and the results are simpler to

Filk] — Hfle—92 % 8 grasp than the theory of manifolds. In addition, they provide a way
[k] = (e ) ®) of deriving the Jacobian of an arbitrary matrix factorization, by ap-
=0 plying thed operator first and then evaluating theroduct of all the
Channel modelling and performance analysis over fading wirelggglependent differentials. This last task entails some additional com-
Channels haVe been Studied eXtenSiVely and in numerous Case%)'@ﬂty’ because |t requires the description of the group of matrices
receiver performance can be expressed in closed form (see e.g. [§}))mean of their independent parameters (see e.g. Section IV). The
Most of the results apply to narrow-band SISO/SIMO transmissiogya|uation of this Jacobian is essential to derive the probability den-
In this context it the channel model is often expressed only in tergsgy function (pdf) of the factors from the pdf of the original matrix.
of the statistics of the fading envelope .[l] , |{H[]}| of each e will borrow the notation from [2] and indicate kA the matrix
path coefficient for ther, ¢) link. The interesting and challenging of differentials and by(dA) the exterior product of the independent
aspect of the MIMO case is that the performance are expressegjfiries indA, for example:
terms of the eigenvalues of the matFk” H and thus the results for
the scalar case are not generalized in a straightforward way to MIMO
systems. The goal of this paper is twofold: we will first describe how ® if As diagonalldA) = Aidaii

the statistics of the eigenvaluestef H are linked to the joint statis- @ if A = A” or A is lower triangulaitdA) = A1<i<j<ndai;
tics of H(d) = (H"[0], ..., H"[1])" and then we will specialize the o see Section IV fof unitary.

analysis to the case of wide-sense stationary Rayleigh fading, deU\\llﬁen dealing with complex matrices we can apply the same rules re-

ing the statistics of the channel capaciy)(for an arbitrary number : . - ~

of transmit and receive antennas. Prior to this we will provide dpembering that Ia rlly coinsgéz r/l\e;s(\asso_ﬁl]ate(:(alz - d%gz}f\s[zt] d
overview onexterior differential formsvhich explain the derivations of, More precise Wdz) = [.Z] Slel. ereforaizcan be rea ©
done in the following. as a bidimensional vector. Since the multiplicatiortcf = + jy by

a complex numbest = a + j b can be viewed as:

for an arbitraryA, (dA) = A; Aj dasj

I1l. ELEMENTS OF EXTERIOR DIFFERENTIAL FORMS
The study of random eigenvalues, initiated by the pioneering work (z, v)
of Wigner [13], provides a wide range of tools to analyze the statistics
of several matrix factorizations beside the eigenvalues decomposit}p&n (9) it follows that
(EVD). The first step in deriving the statistics of the resulting matri-
ces consists in deriving the Jacobian of the change of variables froemma 1 If w=u+jv are analytical functions af =x+ 5y then
the original matrix to its factors. When the decomposition is unique
(at least up to a sign and permutation), the number of independent det o(u,v) — det ow
variables in the matrix and in the corresponding factors is the same a(X,y) 0z
and the Jacobian matrix is square. This can be verified to be trued'

the case of EVD (eigenvalue), QR or LU (lower-upper) decomposd- (d2) = —(d="); i) d= A dz* = 0. Note that forB — XA

tions and Cholesky decomposition for example [2]. . n R n
To keep the presentation self-cointained, next we informally intrfB) = [X["(dA) inR" (the absolute value square|o | in C").

duce some of the concepts used in the statistical analysis on ran ecaldjse of (9) ahnd LemAr\nall, qfrthciigonil :)r ungzgllrlea(ri)ra\napplngs
matrices (see e.g. [4]). One of such tools is based on the seminal * 9°"° notchangédA). i.e. ifQTQ =1 (Q ) = ([dA).
work of Elie Cartan orexterior differential calculug3]. The concept IV. THE STIEFEL MANIFOLD
of exterior productdenoted by the symbael, was introduced by Her- o o o . .
mann Ginter Grassmann in 1844 and was utilized by Cartan in tfa the description of the joint dlstnbut_lon of matrix decomposm_oqs
study of differential forms. Ordinary vectors atevectors, wedge SUCh as the QR the EVD etc., there is the clear need of identifying
products ofp independent vectors generates the spageaictors. Whatis(dQ). A unitary Q can is described by~ smooth functions
Given two vectorsy, 4 the basic axioms of Grassman algebra are:that can be_lntegrate_d over nice enough intervals which describe the
so called Stiefel Manifold: clearly, the independent parameters of the

Stiefel Manifold are not the real and imaginary parts of the elements

—b

a
S (10)

(daz) = |a|?*dzdy. In general [4]:

2

(11)

ﬂ1er properties of the complex case are easily derived, for example:

e aANa=0

e aN f=—-fFAa of Q. For the purpose of studying the statistics of matrix decom-
e (ad) A B=alan B). positions, such as the QR or the EVBR,out of then® parameters
The axioms are sufficient to establish that: are redundant (in the sense that the decomposition is unique up to
n parameters). It is to our advantage to remove this ambiguity by
(Aa) A B =|Al(aAp). (9 having the diagonal elements @f set to be real. Note that, because
Uf Aism x nandm > n orif it is rank deficientA| has to be replaced O QQ" =1 — QdQ" = —dQQ": thus, when the diago-

by 0. If m < n |A| and has to be replaced by the matrix componida, Nal elements o are real the diagonal elements@HQ" are zero
i.e. the matrix of all cofactors of orden, if m < n [3]. andQdQ* is antisymmetric. So, in most casgiQ) is replaced by



factors of Let us denote by 4 (A) andpg (B) the pdfs of the random matrices
/1"’01((;)3‘3) A and B respectively: the pdf ofA is called generalized Wishart
distribution. To derivepa(A) one can follow the approach in [6]
which is based on the QR and Cholesky decompositioi3 ahd A
respectively:

B=0QR, A=R"R. (15)

Considering thatdA) = (IR R + R¥dR):

Q orhtogonal O 1
o~ <
(dA) = @ dri itk + dri T
Figure 1: The factors in th&0l(Q, 5) for Q orthogonal. 1<i<j<n  1<k<i
=2"  (jral)" T (dR) (16)
(Q"dQ) = Ai>;qf'dg;. Note also that, whe® is m x n and i=1

semi-unitary withm < n, we have2mn — n(n + 1) real param-

eters (the roles are reversednif > m) and we can always define

anm x m matrixQ = (Q, Q") such thaQ” Q = I,,.,,, so that a Y ) mili

(dQ) = (QHdQ) pa(A)(dA) =pa(R"R) 2" |ry] (dR). (@17
Several different approaches can be taken to parameyrieits =1

independent parameters, for example:

with (dR) = Ai<;(drs;). Therefore:

Denoting byQ = (Q, Q") them x m matrix such thaQ”’ Q =
e Qs product of Givens rotations [Ch.5 [5]], i.e. f@ n x n  1,,,, has the top x n portion equal to an identity matrix and the

v v bottomm —n rows equal to zerqdB) = (Q” dB) = (Q” dQR +
Q= G(k,1) (12) 1x,»dR), taking the wedge product we have:
k=1i1=k+1
Y 2\ m+1—i
eachG(k, i) has one parameter (the Euler angle) wigiis @B) = (Irul") (dR)(dQ), (18)
orthogonal and two when it is unitary; =1
e Q is product ofn Housenholder rotation$d; = I — where(dQ) = (Q"dQ) is the element of volume of the Stiefel

2v,vi /(vEv;) [Ch.5 [5]], where fori = 0,...,n — 1 each manifold. Hence:
v, is described by, — ¢ complex parameters.

h'd ,
e DecomposingQ = Q2:DQ,, with €;, i = 1,2 orthogonal pe(B)(dB) = ps(QR) |m\2 m41—i (dR)(dQ), (19)

matrices and = diag(e??1, ..., e?%). i=1
e UsingQ = ¢’® where® is Hermitian (the description is . _ Q. 2
UniqUeY @ : 0 < © < 7). ?Or;ldo,wv:th\/ﬁ . R, from (17) and (19) andlA| = ~7_ |ri|* it
e For Q not having eigenvalues equal tel (a probability zero z
event for continuous rando®), the Cayley transforn® = pa(A)=2""|AI""  ps(QVA)(QTdQ), (20)

(1 +3S)71(1 + jS) whereS is skew Hermitian, i.eS” =

—S. Note thatS = (1 +Q)~'(1 - Q). which is the form of the so callegeneralized Wishart densify].
The3 x 3 orthogonal matrix case is illustrated in Fig. V. The uniformGeneralizing the results in [4] to the complex case (17) implies:
p.d.f. in the Stiefel group of orthogonal or unitary matrices is called

i _ H .
Haar distribution[4, Ch.1]. The volume otQHdQ) integrated over Lemma 2 When the p.d-pz(B) ~ _p(B B) then: .
QT Q = I, for Q unitary with real diagonal elements, is: DQandR in Fhe Q.R decomposmoﬁi - f?R’ are |ndepenQent.
The p.d.f. ofQ is uniform over the uniQQ™ = I (Haar distribu-

2 ()mn—n(n=1)/2 tion) andR is

Vol(Q,, ) = T D (13)

Y 2 m—n
pr(R) = |73

=1

2) The p.d.f. oA is [c.f. (13)]:

H .
when the diagonal elements @, ,, are constrained to be real: P(RTR)Vl(Qy, )i (1)

(71' (m—1)n—n(n—1)/2

VOl(Qm,n) = ~n_—1 R (14)
o I(m —1) —n A m—n
pa(A) =2""|A""p(A)Vl(Q,, ), (22)
V. THE STATISTICS OFA = B B aND 1ITS EVD The Jacobian of the EVIA = UAU¥ can also be obtained by

The matrix we are interested in has the fofn= B B, where fixing the diagonal element & to be real so that the EVD is unique:

Bisa randorrm_x n r_natnx Wlth_ continuous _p.d.f and we will as- (dA) = (dUAU" +UJAUY £ U" AQU) (23)
sume thain > n in which caseA is full rank with probability oné. = o o
(dA) = (U7"dAU) = (U"dUA — AU"dU +dA)

2In casem < n A hasn — m zero eigenvalues. Because the non null N
eigenvalues oB ¥ B andBB* coincide, the case» > n is general enough = i — )\i)Q(dA)(U Hau ). (24)
to provide the distribution of the non zero eigenvalues for any choiee of. 1<i<k<n




Equations (17) and (24) are the equations that can be used toaul the characteristic function 6fis:

dress the general case&f= B B: (RYl D
v v men dc(s) = E{e’“} = E 11+ ~H[k]"H[K]|* (35)
pa(A) = 27" (w-X)P N () (25) k=0
1<i<k<n i=1

) both functions of the eigenvaluesHi[k] " H[k], k =0,..., K — 1.
T . pe(QAZUT)(QYdQ)(UMdU). (26) The average Capacity can be easily derived explicitly. In k]
is given by (8) thus, undea3, H[k], k,0,..., K — 1 are also zero
When in Lemma 2(A) = p(A), the density of the eigenvaluesmean complex Gaussian with variance:
is simple to derive: for example, in the multivariate Gaussian case

—mn (A DS o (1=l3)
{B}i; s N(0,0%), p(A) = (70®) ™" exp(—5) [cf. (22)] o[k = Rir(ly, Io)e 727 =" (36)
and, for \; > 0: (11,12)=0
! m—n
hd 9 _ P Y as a direct consequence of Lemma 3 we can write:
pA(A) = X1 ()\k — AZ) e o2 AZ (27)
1<i<k=n i=1 Corollary 1 Underal, a2 the average Capacity for anfy:, m) in
wherex, = 2" (10?) ™" Vol(Q,,.,)Vol(Un.). (32)s:
Using Wigner's approach, the density function obtained by aver- Bl o
aging over all permutationsa (A) is 2;pa (A), thus [7]: E{C} = log 1+~oy[kle wr ™™ (x)ds (37)
k=0 O
mma3 For m > n and any continuous realf(A) =
1 Fu(A) wherep,' =" (x) is given in (30).
z
_ = m—n The derivation of®¢(s) is more complicated, since it requires
E{f(A)} = " d 28 . o i . - ~
ran 07 f(x;u (2)de (28) averaging over the joint density of the eigenvalues oFEl]” HI[k],
—n 1 > k=0,...,K — 1. IngeneralK > L therefore from (8) the joint
pn () o, A (@, A2,y An)dAz . .. dAn (29) density of the MIMO channel response at all frequency bins is:
P B . ~ ~ o~ o~
Note that, forf(A) = = [_, 6(z — Xi(A)), E{f(A)} in (28) is pa(H[K]) = p(H[p] | H[p])p(H[p]) (38)
the empirical distributionof the eigenvalues or, in other words, the _ _
average histogram of the eigenvalues of random matrix samples. Wherek = (0,..., K), p = (ko,..., k) is a vector with as ele-
Whenpa (A) is as in (27) [1], witha = m — n: mentsL + 1 distinct, but otherwise arbitrary, indexes extracted from
k andp is the vector of the complementary indexes. The blocks of
N 1=, H[p] = (H” [ko], .., HT [k.])T are in a one to one mapping with the
pa(z) == i(x) (B0 piocks ofH(d) = (HT[0],.., H'[L]))T: in fact, (8) for each antenna
k=0 pair represents a system of linear equations, each corresponding to a
where, denoting by 7 (z) the Laguerre polynomials of order different indexk; € p, with coefficients forming a full rank Vander-
o monde matrixV £, ;:
k! _
pa)= —————a% "  Li(a). 31 27
¢k (JJ) F(k +fa+ ]_)x € k(x) ( ) {WL+1}il — e—]%kil le [O,L], k€ P, (39)
-1 P, _ 2kt
V1. STATISTICS OF THE THEMIMO FREQUENCY Thus,3 cp;i = {W i Jkg such that 2, crue™ K = Og;n,
SELECTIVE CHANNEL (Kronekers). Thecy,; are computable as the coefficients of thid
We will assume that: order Lagrange polynomials
al. The noise is AWGN with variance? = 1 Y 5 — p—i2mk; /K
a2. {H[l]};, are spati_ally uncorrelate_d circularly symmetr_ic zero Cr;(2) 5 o janki /K _ g—i2nk; /K (40)
mean complex Gaussian random variables (Rayleigh fading) with J#1,0<5<L

Rully,la,r1, ro,ta,te] = 5 E{{H[L]}, 4 {Hll2]}roao} =
(5(151 — tz) (5(7’1 — TQ)RH(ZQ, ll).
Let us also denote by: P X <
I:I[hj] _ H[l]eijWkil/K — ﬂ[ki]Cki[67j2nkil/K.
=0 1=0 k;€p

with (k;, k;) € p. Thus, for anyh; we can write:

n , min(Np,Ng), m , max(Nr, Ng). (32)

. . . . . 41)
In the MIMO case described in Section Il, denoting-pyhe signal . S = . (.
to noise ratio dictated by the large-scale fading and receiver no(’}ﬂ%m (4\(/)\/)'t?10m (41), Itfc?||0W_Sjt2f1r%1;(};I([p] | Pf][p]) Is product of Dirac
power, the conditional channel Capacity is eltas. WIthCl, n; » Ck, (e ) we have
o 1

- 376 _ _ Y _ X< _
O =1log|l + AR B3 ) )= | s@mR] - ARICGLA  (42)

therefore the average Capacity is: h;€p ki€p
<1 3 pa(H[p]) = W Lt V" pe (Wi @ 1) 'Hlp)).  (43)
E{C} = E {log(1 +~yAi[k])} - (34)

b0 11 Gathering these results we can state the following:



Lemma 4 Underal, for an FIR Nz input Nr output MIMO fre-  T*(Xu0+q)) = T*(Xaug)) = T°( ). This coarse approximation
quency selective channel having probability density function of tagplied to (47) in conjunction with assumptiaBfor L > 1 leads to
MIMO impulse responsen(H(d)), d = (0,...,L), H(d) =

H7(0),...,HT (L))", the characteristic function of the mutual in- Y n _ _ .0
f(orm;ti)on is equzgl t)cz: bo(s)~  E |1+ HIQH[IQ)Y | (49)
=0
Z m ~ -~ which has the advantage of being expressed directly in terms of the
Do(s) = X2 Y (xn)pu((W 3, @ 1)Hp])(dH[p]) (44) J g &p y

eigenvalues oH" [IQH][IQ]. Therefore, usinga (A) in (27) for

h=0 ) .
o” = 1 we can write:

wherexz = |W 1| " VENT, W 14 is defined in (39)W |, can v Z v
be expressed in terms of the coefficients of the Lagrange polynomi%sc(s) ~ (1+ o? [ZQ])\Z_)QSPA(AM Co 0 An)(dA).
in (40) and, WIthXh - (C;mh, ey CkLh) 1=0 Ai>0,-q
(50)
XL . In caseyo?[lQ] > 1 to reduce the multivariate we can note that
T(Xn) » T+ H" [k |H [k Cy, 1. Cryn 45) (1 4 102[1Q]A) @ ~ (7o 2[IQ] 1)@ which gives us:
(5, )=0 '

i . . . Y n(n+1) )
whereCy,, , Ck, (e 72™"/K) andCy, (2) is defined in (40). Do(s) ~ A" (GIQNH ™ () (B1)
To reach a simple expression 0k (s) whenK >> L, we can restrict v =
our attention to the cases where the following assumption is valid, in- . (C(EH)D(m —n + Qs + i)~
terpolating®..(s) for the intermediate values df: i=1
a3. The number of frequency bins is an integer multiple of the chan- o ]
nel duration, i.e K = Q(L + 1). wherey (1) is given in (27) and
Choosingp = (0,Q, ..., QL), sincee @4 — (il z v v e v
W ., is unitary and L) (a+i) = N e i (Ae—Xi)2(dA).

iomd i=1 AiZ0 = 1<i<k<n
(927 0QF0 /K _ 1 e’ _ @ -1 (46) (52)
L+1 —enlG58+ ) _
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