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Abstract

We formulate the RNA folding problem as anN ×N matrix field theory. This matrix formalism
allows us to give a systematic classification of the terms in the partition function according to their
topological character. The theory is set up in such a way that the limitN → ∞ yields the so-called
secondary structure (Hartree theory). Tertiary structure and pseudo-knots are obtained by calculating
the 1/N2 corrections to the partition function. We propose a generalization of the Hartree recursion
relation to generate the tertiary structure. 2002 Published by Elsevier Science B.V.

PACS: 87.10; 87.15; 11.15-q; 11.15.Pg

1. Introduction

Over the last decade, RNA has transformed itself from being a relatively minor player in
the central dogma of Watson and Crick to being one of the central players in molecular
biology. Indeed, it has been recently demonstrated that in addition to its “information
carrier” role in protein synthesis, some types of RNA’s, known as ribozymes, have an
enzymatic activity which is crucial to the functioning of the cell [1]. As a consequence of
this new prominent role of RNA, the search for the three-dimensional structure of RNA has
become an important problem in biology. This view was expressed forcefully by Tinoco
and Bustamante [2].

As this paper is addressed to theoretical physicists, we begin with a schematic review.
A very thorough review on RNA folding can be found in Ref. [3].

RNA is a heteropolymer constructed out of a four-letter alphabet,C,G,A, andU (for
the four bases or nucleotides cytosine, guanine, adenine, and uracil). The length of an
RNA chain ranges typically from 76 for tRNA to a few thousand base pairs for mRNA. In
solution, there is an attraction betweenC andG and betweenA andU , with energies
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(a) (b)

Fig. 1. (a) Secondary (left) and tertiary (right) structure of a tRNA. (From I. Tinoco, with permission.)
(b) A “kissing hairpin”.

ε(C,G) � −3 kCal/mole andε(A,U) � −2 kCal/mole respectively. There is also a
weaker attraction betweenG andU , with energyε(G,U) � −1 kCal/mole. Note the
correspondence 300 K� 0.6 kCal/mole� 1/40 eV.

Consider an RNA sequence{s} = {s1, s2, . . . , sL} (wheresi takes on one of the four
possible valuesC,G,A, andU ). For example, we might be given the sequence{s} =
{CCCGAAAUUCGUAG. . .}. The attraction between the nucleotides folds the RNA
heteropolymer into a 3-dimensional structure referred to as a shape. Biological functions
depend largely on the shape assumed by a particular RNA. Thus, the map from sequence
space to shape space is of great importance in molecular biology and has been much
discussed in the biophysical literature. As mentioned above, this has been even more true
since the discovery of the enzymatic activity of some RNA.

In the molecular biology of biopolymers, it is conventional to define three levels of
structures. The primary structure is just the chemical sequence, or sequence of nucleotides.
The secondary structure is the local short-range pairing of complementary bases, leading
to segments of helices separated by loops and bulges (“clover-leaf” structure). Finally,
the tertiary structure is the spatial arrangement of these secondary motifs, in which the
loops and bulges themselves can partially pair, leading to the so-called pseudo-knots (see
Fig. 1(a)).

An example of pseudo knot is the “kissing hairpin” (Fig. 1(b)).
In contrast to the problem of protein folding [4,5], RNA folding is hierarchical in that its

secondary structure is much more stable than its tertiary structure, which can be treated as
a perturbation [2]. Experimentally, the two levels of folding (secondary and tertiary) can be
separated by varying the concentration of Mg++ ions [6]. In addition, the attractive force
between nucleotides saturates. Once a given nucleotideC has paired with a nucleotideG,
it cannot be paired with yet anotherG. In contrast, the attraction between amino acids do
not saturate. Thus, the problem of RNA folding is considerably simpler than the problem
of protein folding.

The determination of secondary structure has reached a very high level of sophistication
based on dynamic programming algorithms [7–9].

The problem of RNA folding is clearly topological in flavor and is thus not easily
amenable to dynamic programming methods, although some algorithm has been proposed
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recently [10]. On the other hand, we know from the field theoretic literature that topological
considerations also play an important role in such subjects as matrix theory orM-theory.
In this paper, we propose that matrix theory may be useful to the problem of RNA folding.
We develop a matrix theoretic representation of the topological aspect of RNA folding.

In Section 1, we formulate the RNA folding problem more precisely. In Section 2, we
show how it can be formulated as anN × N matrix field theory. In Section 3, we show
that theN dependence of the field theory can be made explicit in the functional integral
formulation of the problem. As a result, the natural way to compute the 1/N expansion is
through a steepest descent method which is described in Section 4. As this expansion is
very complicated to perform at higher order, we resort in Section 5 to recursion relations
which allow us to approximately incorporate the higher order powers in 1/N .

For a simple introduction to this work, one can go for instance to the website
http://online.itp.ucsb.edu/online/infobio01/zee/.

2. RNA folding

Given an RNA sequence{s} = {s1, s2, . . . , sL} of L bases, let us write down the partition
functionZ at temperature 1/β . We will proceed in steps.

First, construct the matrix

(1)Vij = e−β|ε(si,sj )|v(|�ri−�ri |)θ(|i − j |> 4), i 
= j ; Vii = 0,

where ε(a, b) denotes the 4 by 4 real symmetric matrix giving the attractive energy
between nucleotides,ε(A,U) etc. We set the diagonal elementsVii to 0 to indicate the fact
that a nucleotide does not attract itself. The Heaviside functionθ(|i − j |> 4) incorporates
the fact that the RNA molecule is not infinitely flexible and we cannot pair nucleotides
separated by less than 4 sites. The attractive potential can be taken to bev(r)= −wθ(R −
r) with w andR the strength and range of the attraction respectively.

Now construct

(2)Z = 1+
∑
〈ij〉

Vij +
∑
〈ijkl〉

VijVkl + · · · +
∑
〈ijkl〉

VikVjl + · · · ,

where〈ij 〉 denotes all pairs withj > i, 〈ijkl〉 all quadruplets withl > k > j > i, and so
on. Then the partition function is given by

(3)Z =
∫ L∏

k=1

d3�rk
L−1∏
i=1

f
(|�ri+1 − �ri |

)
Z.

The functionf (r) can be taken to be, for example,δ(r − l) for a model in which the
nucleotides are connected along the RNA heteropolymer by rigid rods of lengthl, or
e−(r−l)2/6σ 2

for a model with elastic rods. Note that the saturation of the hydrogen bond
has been incorporated by the requirementl > k > j > i, and so on. Once the nucleotide
at i has interacted with the nucleotide atj it cannot interact with the nucleotide atk. Note
that in (2), only the enthalpy and combinatorics of pairings are included. The integration

http://online.itp.ucsb.edu/online/infobio01/zee/
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over the atomic coordinates in (3) accounts for the actual topological feasibility of a given
pairing and also for the entropic factor associated with loop formation.

Biologists are interested in the folded configuration essentially at room temperature.
Since room temperature is substantially less than the melting temperature (of order 80◦C,
in other words, the characteristic energy scale of the problem), we want to determine
the ground state configuration of the RNA heteropolymer. In other words, once we have
obtainedZ we would like to extract the term inZ that dominates asβε tends to infinity
in (1).

We have given a simplified quantitative framework for the RNA folding problem. From
a chemical point of view, it would be appropriate to include also the stacking energies of
couples of complementary base pairs, instead of energies of single pairs of bases. However,
in the following, we will stick with the latter. We will also concentrate on the evaluation
of the “pairing” partition function (2). We expect that the various effects we have ignored,
such as stacking, etc., can be added later as “bells and whistles” to our approach. The
stacking energies for instance can be taken into account by utilizing a 16× 16 interaction
matrix between pairs of bases instead of the 4× 4 matrixε(si, sj ) we use here.

3. Matrix theory

What is the connection with matrix theory?
Consider pulling apart the folded RNA structure given in Fig. 2(a).
We obtain the structure of Fig. 2(b) which to physicists are reminiscent of Feynman

diagrams in a variety of subjects: matrix theory, quantum chromodynamics, and so on.
For the sake of definiteness, let us borrow the terminology of quantum chromodynamics.

The dotted lines are known as gluon propagators, and the solid line as a quark propagator.
The secondary structure corresponds to diagrams in which the gluon lines do not cross over
each other, while the tertiary structure corresponds to diagrams in which the gluon lines do
cross.

The crucial observation, originally made by ’t Hooft [11], is that there is a systematic
relation between the topology of a graph and its corresponding power of 1/N2. For

(a) (b)

Fig. 2. (a) Representation of the secondary structure of an RNA. (b) Representation of the same RNA
stretched.
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instance, planar diagrams are of order 1/N0, and diagrams in which gluon lines cross
are of higher order. We merely have to go to the largeN expansion, and the diagrams are
classified by powers of 1/N2. Note that a somewhat similar formulation in terms of matrix
theory has been used for the meander problem [12].

Consider the quantity

(4)Z(1,L)= 1

A(L)

∫ L∏
k=1

dϕk e
−N

2

∑
ij (V

−1)ij tr(ϕiϕj ) 1

N
tr

L∏
l=1

(1+ ϕl).

Hereϕi (i = 1, . . . ,L) denoteL independentN by N Hermitian matrices andΠl(1+ ϕl)

represents the ordered matrix product(1 + ϕ1)(1 + ϕ2) · · · (1 + ϕL). All matrix products
will be understood as ordered in this paper. The normalization factorA(L) is defined by

(5)A(L)=
∫ L∏

k=1

dϕk e
−N

2

∑
ij (V

−1)ij tr(ϕiϕj ).

Let us refer to the row and column indicesa andb of the matrices(ϕi)ba as color indices,
with a, b = 1,2, . . . ,N . The matrix integral (4) defines a matrix theory withL matrices.
We can either think of it as a Gaussian theory with a complicated observable1

N
tr
∏

l(1 +
ϕl), or alternatively, by raising1

N
tr
∏

l (1+ ϕl)= elog[ 1
N tr

∏
l (1+ϕl)] into the exponent, as a

complicated matrix theory with the action(N2
∑

ij (V
−1)ij tr(ϕiϕj )− log[ 1

N
tr
∏

l (1+ϕl)]).
Another trivial remark is that we can effectively remove1

N
tr from (4).

The important remark is that the matrix theory [13] defined by (4) has the same
topological structure as ’t Hooft’s largeN quantum chromodynamics. There areL
types of gluons, and the gluon propagators are given by1

N
Vij . As in largeN quantum

chromodynamics, each gluon propagator is associated with a factor of1
N

and each color
loop is associated with a factor ofN. The reader familiar with matrix theory or large
N quantum chromodynamics can see immediately that the Gaussian matrix integral (4)
evaluates precisely to the infinite series

(6)Z(1,L)= 1+
∑
〈ij〉

Vij +
∑
〈ijkl〉

VijVkl + · · · + 1

N2

∑
〈ijkl〉

VikVjl + · · ·

Some “typical” terms in this series correspond to the diagrams in Fig. 3.
This differs from (2) only in that the terms with different topological character are

now classified by inverse powers of1
N2 . Thus, the use of the largeN expansion allows

us to separate out the tertiary structure, represented in (6) for example by the term
1
N2

∑
〈ijkl〉 VikVjl, from the secondary structure.

Note that the ordered product
∏

l(1 + ϕl) ensures that the diagonal elementsVii of the
matrixV do not appear inZ(1,L). We have nevertheless already setVii to 0.

Fig. 3. Graphical representation of a few terms of the partition function.
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The program proposed in this paper is thus to evaluateZ(1,L) with V an arbitrary
matrix. OnceZ(1,L) is known we can then insert it into (3) to evaluateZ. The parameter
1
N

serves as a convenient marker to distinguish the tertiary structure from the secondary
structure. What we offer here is a systematic way of generating refinements to the
calculation ofZ, and hence the free energyF, to any desired accuracy in a well controlled
approximation.

Since inZ(1,L) the quantities 1 andL represent arbitrary labels we can just as well
define

(7)Z(m,n)= 1

A(m,n)

∫ L∏
k=1

dϕk e
−N

2

∑n
i,j=m(V

−1)ij tr(ϕiϕj ) 1

N
tr

n∏
l=m

(1+ ϕl),

where again the normalization is given by

A(m,n)=
∫ n∏

k=m

dϕk e
−N

2

∑n
ij=m(V

−1)i,j tr(ϕiϕj ).

As we shall see in the following, we will construct recursion relations to evaluate (7)
approximately. These recursion relations can be easily programmed to calculate the free
energy of the RNA chain.

4. Large N

In the matrix representation (4)N appears implicitly in the size of the matricesϕi.
In order to study the largeN limit, we need to extract theN dependence explicitly, for
which we have developed the following method. DefineGl′l by Gl′l = ∏l′−1

i=l (1 + ϕi) for
l′ − 1 � l, Gl−k,l = 0 for all k > 0, andGll = 1. ThenGl′l satisfies the equation

(8)Gl′l − (1+ ϕl′−1)Gl′−1,l = δl′l .

Thus, if we defineMl′l = δl′l − (1+ ϕl′−1)δl′−1,l then we see thatGll′ is the inverse of the
matrixMll′ and thus

Z(1,L)= 1

A(L)

∫ ∏
k

dϕk e
−N 1

2

∑
ij (V

−1)ij tr(ϕiϕj )M−1
L+1,1

= 1

A(L)

∫ ∏
k

dϕk e
−N 1

2

∑
ij (V

−1)ij tr(ϕiϕj )

(9)×
∫ ∏

l

dψ∗
l dψl e

−ψ∗
l Mll′ψl′ψL+1ψ

∗
1 .

We have used the standard representation of the inverse of a matrix by an integral
over Grassmanian fermionic variablesψl andψ∗

l . Note the felicitous fact that detM =∫
dψ∗ dψ e−ψ∗Mψ = 1 which allows us to write (9) without a denominator.
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To compactify this representation ofZ further we introduceM(h)ij =Mij +hδi,1δj,L+1

and write

(10)

Z(1,L)= 1

N

∂

∂h

1

A(L)

∫ ∏
k

dϕk e
−N 1

2

∑
ij (V

−1)ij tr(ϕiϕj )
∫

dψ∗ dψ e−ψ∗M(h)ψ .

Henceforth, it is understood that after differentiation with respect toh we seth to 0.
We can now perform the Gaussian integration overϕk , thus obtaining

(11)Z(1,L)= 1

N

∂

∂h

∫
dψ∗ dψ e−S0(ψ

∗,ψ)−S1(ψ
∗,ψ)

with the free fermion action

(12)S0(ψ
∗,ψ)=

∑
j

(
ψ∗
j −ψ∗

j+1

)
ψj + hψ∗

1ψL+1

and the interacting fermion action

(13)S1(ψ
∗,ψ)= − 1

2N

∑
j,j ′

∑
a,b

ψ∗
a,j+1ψ

b
j Vjj ′ψ∗

b,j ′+1ψ
a
j ′ .

Note that in (13) we have displayed the color indicesa andb explicitly.
We next rewrite

(14)S1(ψ
∗,ψ)= + 1

2N

∑
j,j ′

Kjj ′Kj ′j = 1

2N
trK2

in terms of the color singlet variable

(15)Kjj ′ =
∑
a

(Vjj ′)
1
2ψ∗

a,j+1ψ
a
j ′ .

Now use the Gaussian representation

(16)e− 1
2N trK2 = 1

C

∫
dAe−N

2 trA2+i trAK

with the normalization factorC = ∫
dAe−N

2 trA2
. Note that even thoughK is complex we

can takeA to be Hermitean. (Equivalently, the anti-Hermitean part ofA drops out.) Putting
it together we obtain

(17)Z(1,L)= 1

N

∂

∂h

1

C

∫
dAe−N

2 trA2
∫

dψ∗ dψ e
−∑

ij

∑
a ψ

∗
a,iMij ψ

a
j

where

(18)Mij = δij − δi,j+1 + hδi,1δj,L+1 + i(Vi−1,j )
1
2Ai−1,j

or in matrix form
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(19)ML =



1 0 0 · · 0 h

−1 1+ a12 a13 · · a1L 0
a∗

12 −1 1+ a23 · · a2L 0
· · · · · · ·
· · · · · · ·
· · · · −1 1+ aL−1L 0

a∗
1L a∗

2L · a∗
L−2L a∗

L−1L −1 1


where we have used the convenient notation

i
√
Vij Aij = aij for i < j,

(20)i
√
Vij Aij = a∗

ji for j < i.

The point of these manipulations is that in (17) we have now isolated the color indexa

so that the integral overψ∗ andψ factors intoN copies of the same integral, thus giving

Z(1,L)= 1

N

∂

∂h

1

C

∫
dAe−N

2 trA2
(detM(A))N

(21)= 1

N

∂

∂h

1

C

∫
dAe−N

2 trA2+N tr logM(A).

At this point, we can differentiate with respect toh and seth to 0, obtaining the alternative
form

(22)Z(1,L)= 1

C

∫
dAe−N

2 trA2+N tr logM(A)M−1(A)L+1,1.

In this expression,

(23)Mij = δij − δi,j+1 + i(Vi−1,j )
1
2Ai−1,j .

Let us introduce the action

(24)S(A)= 1

2
trA2 − tr logM(A),

and define the average of an “observable”O by

(25)〈O〉 = 1

C

∫
dAe−NS(A)O.

(Note the nonstandard normalization used here.) Then, our result can be summarized
elegantly as

(26)Z(1,L)= 〈
M−1(A)L+1,1

〉
.

At this point, as remarked earlier, we note that the quantityZ(1,L) can obviously be
generalized toZ(i, j): after all, the site labels 1 andL are arbitrary. Then we have the
appealing result that

(27)Z(i, j)= 〈
M−1(A)j+1,i

〉
for j > i.

It is also useful to introduce the free action

(28)S0(A)= 1

2
trA2
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and to define

(29)〈O〉0 = 1

C

∫
dAe−NS0(A)O.

Then we can also write our result as

(30)Z(1,L)= 1

N

∂

∂h

〈
(detM(A))N

〉
0.

Remarkably, it turns out that we will need both the representations (26) and (30) later in
a single calculation.

Incidentally, our formulation of the RNA folding problem can be immediately adapted to
the marriage problem (or bipartite matching problem) [14–17], one of the classic problems
in combinatorial optimization. We will mention only the simplest version here. LabelL

(with L even) individuals by the indexi = 1, . . . ,L where the individual is male for
i odd and female fori even. Define a matrixVij = 1

2(1 − (−1)i+j )e−βEij whereEij

represents the energy cost of a marriage betweeni and j and its negative provides a
measure of happiness. Referring back to (2) we see that we want to extract inZ(1,L)
all the terms withL/2 powers ofV, for example the termV14V38 · · ·VL−1,2 = e−βETotal

with ETotal =E14 +E38 + · · · +EL−1,2. Since we now want to include possible crossings
in the Feynman diagram language we can set the number of colorsN to 1. Thus, from

(21), we have immediatelyZ(1,L) = ∂
∂h

1
C

∫
dAe− 1

2 trA2
detM(A). Referring to (19) we

see that the differentiation with respect toh and settingh to 0 amounts to replacing the
L+ 1 byL+ 1 matrixM(A) by theL by L matrix obtained by deleting the first row and
last column. Furthermore, since we want the terms withL/2 powers ofV, that is, with

L powers ofV
1
2 , we can set the 1’s and−1’s in this matrix to 0. Denoting the resulting

matrix byM(A), we obtain the following representation for the marriage problem

(31)Zm(L)= 1

C

∫
dAe− 1

2 trA2
detM(A).

Clearly, the representation given here can be generalized in a number of directions, for
example, by including individuals who remain single.

It is easy to see how this representation works: the Gaussian integration insures that in
detM(A) only the appropriate terms are picked out.

5. Steepest descent

The fact that we have been able to display explicitly theN dependence is crucial and
allows us in principle to carry the 1/N expansion to any order. The standard strategy to
evaluate integrals such as (22) is of course to use the method of steepest descent [18,19].

To leading order the steepest descent approximation is easy enough to carry out. The
stationary point is determined byδS(A)

δA
= 0, that is

(32)Alk = i(Vlk)
1
2Gl−1,k+1
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Fig. 4. Graphical representation of the Hartree recursion relation. The thick line represents the
propagatorG.

where we find it useful to define

(33)Gij = (
M−1)

i+1,j .

Notice that with this definitionGij is defined fori from 0 toL − 1 and forj from 2 to
L+ 1. The identity

∑
j Mij (M

−1)jk = δik can now be written as

(34)Gi+1,k −Gik −
∑
j

Vi+1,jGi,j+1Gj−1,k = δi+2,k.

Referring to (22) and (27) we see that to leading order in steepest descent,Z(i, j) is just
M−1(A)j+1,i =Gji evaluated at the stationary point.

Eq. (34) has already been written down in the literature [7–9,20–25] and is known as
the “Hartree approximation”. It has the obvious interpretation (see Fig. 4) that to lowest
order the additive effect of including one extra nucleotide labelled byL + 1 to the RNA
heteropolymer can be described by pairing that nucleotide to the nucleotide labeled byj,

which separates the heteropolymer into two segments, one from 1 toj and the other from
j + 1 toL+ 1. We then sum over all possiblej of course.

In principle, steepest descent gives a systematic expansion ofZ(1,L) to any desired
power of 1

N
by expanding the exponent and the observable around the saddle-point. In

the present context, this implies that the full three dimensional structure of the RNA can
be obtained by expanding around the secondary structure. In particular, the higher order
terms do not disrupt the secondary structure, but merely add new interactions, in addition
to the existing secondary pairing. This is in marked contrast with protein folding, where it
is known that there is a strong correlation between secondary and tertiary structure.

In practice, however, it proves to be quite tedious to calculate the1
N2 terms explicitly. In

the integral in (22) we are now to replaceAij by Aij + xij /
√
N whereAij is determined

by (32) and (34). A straightforward calculation shows that

(35)

Z(1,L)=
∫

dx exp

(
−1

2
trx2 − 1

2
tr
(
M−1c

)2 −
∞∑
p=3

(−1)p

pNp/2−1 tr
(
M−1c

)p)

×
{(

1+
∞∑
p=1

(−1)p

Np/2

(
M−1c

)p)
M−1

}
L+1,1

whereM−1 is related toG through Eq. (33), andcll′ = √
Vl−1,l′ xl−1,l′ . The systematic

corrections toZ are obtained by expanding (35) in powers of 1/N1/2. By symmetry, no
half-integer powers ofN remain in the expansion ofZ.

The first thing to evaluate is the propagator of the fluctuation fieldsxij . This is just
the inverse of the kernel of the quadratic form appearing in the exponent of (35). This
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Fig. 5. Graphical representation of the Bethe–Salpeter recursion relation. The dotted lines represent
factors

√
Vij while the dashed lines represent factorsVij . The solid thick lines represent Hartree

propagatorsG. The Hartree propagators being directed, the arrows denote the direction of increasing
spatial index.

propagator3ij,kl is in fact a scattering amplitude and satisfies a form of the Bethe–Salpeter
equation [26]

(36)3kl,mn = δkmδnl +
∑
ij

V
1/2
kl V

1/2
ij Gk−1,i+1Gj−1,l+13ij,mn

whereG are the Hartree propagators (34). In Fig. 5, we show a graphical representation of
this recursion equation, as well as the series of graphs it resums. It is clear that this equation
resums all the possible ladder (or rainbow) diagrams to this order.

This equation is to be solved for the particular sequence studied. The scattering
amplitude3 defines the contractions of thex fields, and thus its knowledge allows us in
principle to calculate (35) to any order. Note that as usual in field theory, only contractions
which are linked to the operator that we calculate are to be included. (This reduces
considerably the number of contraction.)

A fairly simple calculation allows us to show that the 1/N correction vanishes identically
(see Appendix A). This result appears true by drawing a few graphs, but this gives an
algebraic proof.

It is easy to see that we have to expand (35) to O(x6) in order to calculate the free
energy to order 1

N2 . The calculation, although cumbersome, is straightforward. The free
energy reads

(37)

Z(1,L)=G1L + 1

N2

〈{(
−1

5
B1T5 + 1

12
B1T3T4 − 1

162
B1T

3
3

− 1

4
B2T4 + 1

18
B2T

2
3 − 1

3
B3T3 +B4

)
M−1

}
L+1,1

〉
,

where we have used the notation

Dmn =
∑
m′

M−1
mm′

√
Vm′−1,n xm′−1,n,

(Bp)kl =
(
Dp

)
kl
,
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(38)Tp = trBp.

In (37), the bracket means that the Wick theorem should be applied to contract the fields
xll′ which appear in this expression, their contraction being given by the kernel3.

The calculation of the correction to the free energy is possible numerically for not too
long RNA sequences. Work in this direction is in progress.

Because of the complexity of the (exact) order 1/N2 obtained in this approach, we
found it simpler to generalize the Hartree recursion equation to incorporate some residual
interactions between the loops and bulges.

6. Recursion approach

Two approaches can be used to derive recursion relations for the partition functions. One
is detailed in the following, whereas the other one is described in Appendix B.

A possible approach is to take the expression in (30)

(39)Z(1,L)= 1

N

∂

∂h

〈(
detM(A)

)N 〉
0

and try to relateZ(1,L + 1) to Z(1,L). In other words, we would like to relate
〈(detML+1(A))

N 〉 to 〈(detML(A))
N 〉 where the subscript onM keeps track of the

different matrices in the discussion. Note thatML is anL+ 1 byL+ 1 matrix. Explicitly,
as noted before, theL+ 2 byL+ 2 matrixML+1 has the form

(40)ML+1 =



1 0 0 · · 0 h

−1 1+ a12 a23 · · b1 0
a∗

12 −1 · · · b2 0
· · · · · · ·
· · · · · · ·
· · · · −1 1+ bL 0
b∗

1 b∗
2 · b∗

L−1 b∗
L −1 1


where for convenience we have denoted

(41)

i
√
Vij Aij = aij for i < j � L,

i
√
Vi,L+1Ai,L+1 = bi for i � L,

i
√
Vij Aij = a∗

ji for j < i � L,

i
√
VL+1,j AL+1,j = b∗

j for j � L.

Our strategy is to first perform the Gaussian integration over thebj ’s in evaluating
〈(detML+1(A))

N 〉, keeping in mind that we need the terms of orderh. This method of
integrating out a row and a column has also been used in random matrix theory [27].

We briefly outline the procedure. WriteML+1 = ML+1(b = 0) + B whereB is the
matrix extracted from (40) upon keeping only the entries which depend on theb’s andb∗’s.
Expand(detML+1(A))

N in powers ofB and then perform the Gaussian average over the
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b’s andb∗’s, using〈bib∗
j 〉 = 1

N
δijVj,L+1. After some arithmetic, we obtain

(42)

Z(1,L+ 1)=Z(1,L)+
L∑

j=1

Vj,L+1

〈
(detM)N

[(
∂

∂h
M−1

j,L+2

)
M−1

L+1,j+1

− 1

N

(
∂

∂h
M−1

L+1,L+2

)
M−1

j,j+1

]〉
0
.

We have suppressed the subscriptL + 1 on the matrixM on the right hand side. It is
understood that this expression is to be evaluated ath = 0. Noting that the matrix∂M

∂h
is

particularly simple and that (M−1)L+2,L+2 = 1, we find that

(43)Z(1,L+ 1)=Z(1,L)+
L∑

j=1

Vj,L+1

〈
M−1

L+1,j+1M
−1
j,1 − 1

N
M−1

L+1,1M
−1
j,j+1

〉
.

Using the definition of the connected expectation value

〈AB〉 = 〈A〉〈B〉 + 〈AB〉C
we note, as is well-known, that the connected part is of order 1/N2 [11] and we can thus
write

Z(1,L+ 1)=Z(1,L)+
L∑

j=1

Vj,L+1
〈
M−1

L+1,j+1

〉〈
M−1

j,1

〉
+

L∑
j=1

Vj,L+1
〈
M−1

L+1,j+1M
−1
j,1

〉
C

(44)− 1

N

L∑
j=1

Vj,L+1
〈
M−1

L+1,1M
−1
j,j+1

〉
C
.

Recalling (27) we recognize that the quantities〈M−1
L+1,j+1〉 and〈M−1

j,1〉 appearing in the
second term on the right hand side of (44) are nothing butZ(j + 1,L + 1) andZ(1, j)
respectively. Thus, if we keep only the first two terms on the right hand side of (44) we
obtain the closed recursion relation

(45)Z(1,L+ 1)�Z(1,L)+
L∑

j=1

Vj,L+1Z(1, j)Z(j + 1,L+ 1).

This is precisely the recursion relation in the Hartree approximation (45) mentioned
earlier.

As announced in the introduction, the formulation given here offers a systematic way
to go beyond the Hartree approximation. We expect the third and fourth term on the
right hand side of (44), when evaluated to leading order in1

N
to give the corrections

of order 1
N2 . It is intriguing then that the superficially similar objects〈M−1

L+1,j+1M
−1
j,1〉C

and〈M−1
L+1,1M

−1
j,j+1〉C must be of order1

N2 and order 1
N

respectively. We note however

that a “backward-propagating object” which we define asM−1
jk with k > j makes its first
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Fig. 6. A few graphs corresponding to the 1/N2 term.

(a) (b)

Fig. 7. (a) A few one particle irreducible graphs. (b) The third graph of Fig. 7(a).

appearance in〈M−1
L+1,1M

−1
j,j+1〉C . All other terms in (44) involve only forward-propagating

objects.
We can of course calculate (44) explicitly for smallL in order to check our formulation

and the order of the various terms in1
N

. The result forL= 5 is shown graphically in Fig. 6.
While the recursion relation (44) has an appealing structure, we are not able to evaluate
the two objects〈M−1

L+1,j+1M
−1
j,1〉C and 〈M−1

L+1,1M
−1
j,j+1〉C and express them in a simple

form. Neither should we be able to do that. Our experience in field theory, for example the
Dyson–Schwinger equation in quantum electrodynamics, indicates that recursion relations
generically do not close: new objects appear in the right hand side. There is no reason why
〈M−1

L+1,j+1M
−1
j,1〉C should be expressible in terms of〈M−1

ik 〉. New objects, corresponding
to vertex functions in field theory, must appear.

6.1. Recursion relation

At this point, all we can do is to inspect the set of Feynman diagrams to obtain
an approximate recursion relation forZ(i, j). We propose the following approximate
recursion relation. We propose the following recursion relation. GivenZ(i, j) for all i
andj satisfyingj − i � L − 1, we obtainZ(i, j) for all i andj satisfyingj − i � L as
follows.

First, defineZ1PI(i, j) as the one-particle irreducible (1PI) part ofZ(i, j), that is the
sum of all those diagrams inZ(i, j) that do not fall apart into two separate pieces when a
quark propagator is cut. Some examples are shown in Fig. 7(a).

In Fig. 7(b), we show a different representation of the third graph of Fig. 7(a).
The concept of, and the necessity of introducing, one-particle irreducibility is of course

the same here as in field theory such as quantum electrodynamics.
Second, define the vertex functionΓ j

mn for n > j >m by

(46)Γ
j
mn =

[
1−

∑
n�k 
=j�m

Vjk
∂

∂Vjk

]
Z1PI(m,n)
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Fig. 8. Graphical representation of the recursion equation to order 1/N2. The black triangle

represents the vertex functionΓ j
mn.

Fig. 9. A contribution of order 1/N2 generated by the modified recursion relation.

keeping terms to the desired order in 1/N . Using the language of quantum chromodynam-
ics, this equation is actually easy to describe in words. The vertex functionΓ

j
mn describes

a quark propagating fromm to n and interacting with a gluon at sitej . The operator
[1− ∑

k 
=j Vjk
∂

∂Vjk
] simply insures that there is not already a gluon attached to the sitej

(see Fig. 7(a)). The relation betweenΓ j
mn andZ1PI(m,n) has the same form as the Ward

identity in quantum electrodynamics.
Third, we calculate fork + 1> i

(47)Z(i, k + 1)=Z(i, k)+
k∑

j=1

Vj,k+1

∑
m,n

Z(i,m− 1)Γ j
mnZ(n+ 1, k)

with the boundary conditionZ(i, i)= 1,Z(i, i − 1)= 1, andZ(1,0)= 1. The meaning of
this equation is expressed graphically in Fig. 8.

The recursion is approximate because it introduces higher order terms in 1/N than the
order we are considering.

We have checked this equation explicitly forL up to 6. A graph generated to order 1/N2

is displayed in Fig. 9.
These equations are adequate to order 1/N2, but not to order 1/N4.
We summarize the steps of the new recursion relation.

• Assume the partition functionsZ(i, j) are known for all pairs(i, j) such thati−j < l.
• Calculate all the one-particle irreducible functionsZ1PI(m,n) to the appropriate order

in 1/N ; this can be done by cutting the quark line inZ(m,n) at any sitei (m < i < n)

between the extremities of two gluon propagators, and keeping only the graphs which
do not fall apart into two separate pieces. If no gluon is connected to the sitei, then
this contributes toΓ i

mn. When we attach the gluon to the sitei, this may or may not
disrupt an existing loop, and so the order in 1/N may or may not be changed by one
power.

• Insert this functionΓ and all the functionsZ(i, j) in (47) to calculate the partition
functions with one more base.

• Iterate the process.
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Fig. 10. A contribution of order 1/N2 sterically forbidden.

This procedure allows obviously to evaluate the free energy of a given RNA sequence
recursively. RegardZ(m,n) as the element in themth row andnth column of a matrix.
We impose the boundary conditionsZ(j, j) = 1 andZ(j, j − 1) = 1. We then use (47)
to expand the matrix to ever larger size, moving “towards the northeast”. In numerical
evaluation, we no longer need to know the origin of the parameter 1/N2: we can simply
takeN = 1. The factor 1/N2 has just allowed us to extract the most relevant diagrams
beyond the Hartree theory.

To find the “ground state configuration” for a given RNA sequence we simply write (47)
for Z(1,L)

(48)Z(1,L)=Z(1,L− 1)+
L−1∑
j=1

VjL
∑
m,n

Z(1,m− 1)Γ j
mnZ(n+ 1,L− 1)

and evaluate it “backwards”. We replaceZ(1,L) by the largest term on the right hand side

(49)Z(1,L)� max
j,m,n

{
Z(1,L− 1), VjLZ(1,m− 1)Γ j

mnZ(n+ 1,L− 1)
}
.

The largest term, in turn, comprisesZ of lower order, for which we can apply
this bactracking algorithm. Repeating this process, we obviously obtain the dominant
configuration.

In fact, since the lowest energy configuration obtained in this way is not necessarily
feasible in real space, a better strategy could be to use the backtracking algorithm to
generate a set of lowest energy configurations, and check which one can be realized with
real molecules with their rigidity and chemical constraints. For example, configurations
such as the one of Fig. 10 with crossing “gluon” lines should be discarded, as they are
forbidden by steric constraints.

7. Conclusion

We have shown that the RNA folding problem can be mapped onto a largeN matrix field
theory. The dominant term (N independent) is the usual Hartree theory, which is known
to generate secondary structures. The 1/N correction term vanishes, and the correction
of order 1/N2 generates the pseudo-knots or tertiary structure. The standard Hartree
recursion relation is then replaced by a corrected recursion relation. The resulting three
dimensional structure can be obtained by backtracking the recursion relation. The spatial
feasibility of this tertiary structure (which remains to be checked) is due to the fact that
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the 1/N expansion classifies diagrams in terms of their topology. What remains to be done
is to include the loop entropy, stacking energies and a numerical study of the recursion
equations to order 1/N2, together with the backtracking algorithm. This will be presented
in a forthcoming paper.
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Appendix A

In this appendix, we show that the 1/N correction to the free energy vanishes identically.
We first note that Eq. (21) can be recast in the form

Z(1,L)= 1

N

∂

∂h

∫
dA∗

ll′ dAll′ e
−N

∑
l<l′ trAll′A∗

ll′ +N tr logM(All′ )
∣∣
h=0

(A.1)=
∫

dA∗ dAdA∗
ll′ dAll′ A

∗ e−N
∑

l<l′ (trAll′A∗
ll′+trAA∗)+N tr logM(All′ ,A)

where

M(All′,A)=



1 0 0 · · 0 A

−1 1+ a12 a13 · · a1L 0
a∗

12 −1 1+ a23 · · a2L 0
· · · · · · ·
· · · · · · ·
· · · · −1 1+ aL−1L 0

a∗
1L a∗

2L · a∗
L−2L a∗

L−1L −1 1


.

The steepest descent method applied to (A.1) yields

A= 0, A∗ =M−1
L+1,1,

whereas the definition for all the otherAll′ andA∗
ll′ are identical to those of Sections 4

and 5. The correction of order 1/N to Eq. (35) can be easily recast in the form

(A.2)

Z(1) =
∫

da∗
ll′ dall′ da

∗ da exp

(
− trall′a

∗
ll′ − traa∗ − 1

2
tr
(
M−1

0 c
)2
)

×
{
A∗

(
1

4
tr
(
M−1

0 c
)4 + 1

18

(
tr
(
M−1

0 c
)3
)2 − 1

3
a∗ tr

(
M−1

0 c
)3
)}

L+1,1

with the notations of Sections 4 and 5 andM0 denotes the matrixM evaluated at the
stationary point. It is clear thata∗ occurs only in the term traa∗ of the first line and in
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the terma∗ tr(M−1
0 c)3 of the second line of (A.2). This second term can be integrated by

part in favor ofa, to remove all dependence ona∗ except in the exponent. Once it is clear
thata∗ occurs only in the exponent, we recognize the holomorphic representation of the
δ-function. Thus, the integration overa∗ implies that we can seta = 0 everywhere. This
being done, we see that all the terms likea∗

12, . . . , a
∗
1L anda∗

2L, . . . , a
∗
L−1,L are present only

in the exponent (in the trall′a∗
ll′ term). Therefore, we can integrate them out, and the result

is again a set ofδ-function which impose

a12 = · · · = a1L = a2L = · · · = aL−1,L = 0.

This procedure can be carried out recursively to “eat up” all thea∗ anda, leading to the
vanishing of the 1/N correction (A.2).

Appendix B

B.1. Recursion

An alternative strategy to evaluatingZ recursively is by integrating outϕL+1 in the
expression forZ(1,L + 1). For notational simplicity, let us defineµ2 ≡ (V −1)L+1,L+1,

M ≡ ϕL+1 andT ≡ ∑L
i=1(V

−1)L+1,iϕi . Evidently, we have to do two Gaussian integrals
overM:

(B.1)
∫

dM e−N tr(TM+µ2

2 M2) = C(µ,N)e
+ N

2µ2 trT 2

and

(B.2)
∫

dMe−N tr(TM+µ2

2 M2)M = − 1

µ2C(µ,N)e
+ N

2µ2 trT 2

T ,

where (B.2) is obtained by differentiating (B.1) with respect to the matrixT . Thus, after
integrating outϕL+1 in Z(1,L + 1), we find that the “action”

∑
ij (V

−1)ij tr(ϕiϕj ) has

been replaced by the effective action
∑

ij (Ṽ
−1)ij tr(ϕiϕj ) where(Ṽ −1)ij = (V −1)ij −

(V −1)i,L+1
1

(V−1)L+1,L+1
(V −1)L+1,j . It is easy to see that̃V is theL by L matrix obtained

by crossing out the last row and column of theL+ 1 byL+ 1 matrixV , as we might have
expected. Putting these steps together we obtain

(B.3)

Z(1,L+ 1)=Z(1,L)− 1

(V −1)L+1,L+1

L∑
l=1

(
V −1)

L+1,l

〈
1

N
tr

(
L∏
i=1

(1+ ϕi)

)
ϕl

〉
,

where (
∏L

i=1(1 + ϕi)) is ordered as before. The expectation value of a matrixO

constructed out of theϕi ’s is defined by

(B.4)〈O〉 ≡ 1

A(L)

∫ ∏
k

dϕk e
−N 1

2
∑

ij (V
−1)ij tr(ϕiϕj )O.

In other words,Z(1,L)≡ 〈 1
N

tr
∏

i (1+ ϕl)〉.
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To evaluate〈 1
N

tr(
∏L

i=1(1+ ϕi))ϕl〉 we follow the standard procedure of replacing

ϕle
−N 1

2

∑
ij (V

−1)ij tr(ϕiϕj ) → − 1

N

L∑
k=1

Vlm
δ

δϕk
e
−N 1

2

∑
ij (V

−1)ij tr(ϕiϕj ).

Integrating by parts, we finally obtain

(B.5)

Z(1,L+ 1)=Z(1,L)+
L∑

k=1

VL+1,k

〈
1

N
tr

(
k−1∏
i=1

(1+ ϕi)

)
1

N
tr

(
L∏

j=k+1

(1+ ϕj )

)〉
.

In other words, in (B.3) we have Wick contractedϕl with ϕk in the ordered product∏L
i=1(1+ ϕi). Evidently, 1

N
tr(

∏k−1
i=1(1+ ϕi)) is to be interpreted as 1 fork = 1. Similarly,

1
N

tr(
∏L

j=k+1(1+ ϕj )) is to be interpreted as 1 fork = L.
In principle, we can extract what we need from this recursion relation (B.5). We

emphasize that (B.5) is derived without taking the largeN limit and holds for finiteN ,
includingN = 1.

B.2. Large N expansion

We can now perform a largeN expansion, giving us a systematic way of evaluating
Z to any desired order of 1/N2. In the language of quantum chromodynamics, quantities
in which the indices of the matricesϕj are summed over such as1

N
tr(

∏k−1
i=1 (1 + ϕi))

are known as color singlet operators. It is well known [11] that given two color singlet
operatorsA andB, the expectation value factorizes to leading order in largeN :

(B.6)〈AB〉 = 〈A〉〈B〉 + 〈AB〉C
with the connected correlation function〈AB〉C suppressed by a factor of O(1/N2) relative
to 〈A〉〈B〉. It is easy to see the validity of (B.6) by drawing a few diagrams such as those
in Fig. 8(b). Connected correlation functions〈AB〉C have been intensively studied [13] in
the matrix theory literature and a good deal is known about them. Thus, we can write in
(B.5) 〈

1

N
tr

(
k−1∏
i=1

(1+ ϕi)

)
1

N
tr

(
L∏

j=k+1

(1+ ϕj )

)〉

=
〈

1

N
tr

(
k−1∏
i=1

(1+ ϕi)

)〉〈
1

N
tr

(
L∏

j=k+1

(1+ ϕj )

)〉

(B.7)+
〈

1

N
tr

(
k−1∏
i=1

(1+ ϕi)

)
1

N
tr

(
L∏

j=k+1

(1+ ϕj )

)〉
C

.

We immediately recognize that first term in (B.7) asZ(1, k−1)Z(k+1,L). By definition,
the connected correlation function

ZC(1, k − 1; k+ 1,L)≡
〈

1

N
tr

(
k−1∏
i=1

(1+ ϕi)

)
1

N
tr

(
L∏

j=k+1

(1+ ϕj )

)〉
C
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is evaluated by contracting a matrixϕi from one of the traces to a matrixϕj from the other
trace. Thus the exact recursion relation is given by

Z(1,L+ 1)=Z(1,L)+
L∑

k=1

VL+1,kZ(1, k − 1)Z(k + 1,L)

(B.8)+
L∑

k=1

VL+1,kZC(1, k − 1; k+ 1,L).

This gives an alternative representation of (44). Evidently,

(B.9)ZC(1, k − 1; k+ 1,L)= 〈
M−1

L+1,k+1M
−1
k,1

〉
C

− 1

N

〈
M−1

L+1,1M
−1
k,k+1

〉
C
.

In principle, we can take the exact recursion relation (B.8) and evaluate the two terms on
the right hand side to any desired order in 1/N and thus generate, given an RNA sequence,
secondary structure, tertiary structure, ad infinitum.
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