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Abstract

We formulate the RNA folding problem as &h x N matrix field theory. This matrix formalism
allows us to give a systematic classification of the terms in the partition function according to their
topological character. The theory is set up in such a way that the Nmit oo yields the so-called
secondary structure (Hartree theory). Tertiary structure and pseudo-knots are obtained by calculating
the 1/ N2 corrections to the partition function. We propose a generalization of the Hartree recursion
relation to generate the tertiary structure2002 Published by Elsevier Science B.V.

PACS 87.10; 87.15; 11.15-q; 11.15.Pg

1. Introduction

Over the last decade, RNA has transformed itself from being a relatively minor player in
the central dogma of Watson and Crick to being one of the central players in molecular
biology. Indeed, it has been recently demonstrated that in addition to its “information
carrier” role in protein synthesis, some types of RNAs, known as ribozymes, have an
enzymatic activity which is crucial to the functioning of the cell [1]. As a consequence of
this new prominent role of RNA, the search for the three-dimensional structure of RNA has
become an important problem in biology. This view was expressed forcefully by Tinoco
and Bustamante [2].

As this paper is addressed to theoretical physicists, we begin with a schematic review.
A very thorough review on RNA folding can be found in Ref. [3].

RNA is a heteropolymer constructed out of a four-letter alphate;, A, andU (for
the four bases or nucleotides cytosine, guanine, adenine, and uracil). The length of an
RNA chain ranges typically from 76 for tRNA to a few thousand base pairs for mRNA. In
solution, there is an attraction betwe€nand G and betweem and U, with energies
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(b)

Fig. 1. (a) Secondary (left) and tertiary (right) structure of a tRNA. (From |. Tinoco, with permission.)
(b) A “kissing hairpin”.

£(C,G) ~ —3 kCal/mole ande(A, U) >~ —2 kCal/mole respectively. There is also a
weaker attraction betwee@@ and U, with energys(G, U) >~ —1 kCal/mole. Note the
correspondence 300 ¥ 0.6 kCaj/mole~ 1/40 eV.

Consider an RNA sequende} = {s1, s2,...,s.} (Wheres; takes on one of the four
possible values”, G, A, and U). For example, we might be given the sequefige=
{CCCGAAAUUCGUAG...}. The attraction between the nucleotides folds the RNA
heteropolymer into a 3-dimensional structure referred to as a shape. Biological functions
depend largely on the shape assumed by a particular RNA. Thus, the map from sequence
space to shape space is of great importance in molecular biology and has been much
discussed in the biophysical literature. As mentioned above, this has been even more true
since the discovery of the enzymatic activity of some RNA.

In the molecular biology of biopolymers, it is conventional to define three levels of
structures. The primary structure is just the chemical sequence, or sequence of nucleotides.
The secondary structure is the local short-range pairing of complementary bases, leading
to segments of helices separated by loops and bulges (“clover-leaf” structure). Finally,
the tertiary structure is the spatial arrangement of these secondary motifs, in which the
loops and bulges themselves can partially pair, leading to the so-called pseudo-knots (see
Fig. 1(a)).

An example of pseudo knot is the “kissing hairpin” (Fig. 1(b)).

In contrast to the problem of protein folding [4,5], RNA folding is hierarchical in that its
secondary structure is much more stable than its tertiary structure, which can be treated as
a perturbation [2]. Experimentally, the two levels of folding (secondary and tertiary) can be
separated by varying the concentration of Wgions [6]. In addition, the attractive force
between nucleotides saturates. Once a given nucleGtiaes paired with a nucleotidg,
it cannot be paired with yet anothér. In contrast, the attraction between amino acids do
not saturate. Thus, the problem of RNA folding is considerably simpler than the problem
of protein folding.

The determination of secondary structure has reached a very high level of sophistication
based on dynamic programming algorithms [7-9].

The problem of RNA folding is clearly topological in flavor and is thus not easily
amenable to dynamic programming methods, although some algorithm has been proposed
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recently [10]. On the other hand, we know from the field theoretic literature that topological
considerations also play an important role in such subjects as matrix thedfytioeory.

In this paper, we propose that matrix theory may be useful to the problem of RNA folding.
We develop a matrix theoretic representation of the topological aspect of RNA folding.

In Section 1, we formulate the RNA folding problem more precisely. In Section 2, we
show how it can be formulated as ahx N matrix field theory. In Section 3, we show
that theN dependence of the field theory can be made explicit in the functional integral
formulation of the problem. As a result, the natural way to compute thédxpansion is
through a steepest descent method which is described in Section 4. As this expansion is
very complicated to perform at higher order, we resort in Section 5 to recursion relations
which allow us to approximately incorporate the higher order powerg i 1

For a simple introduction to this work, one can go for instance to the website
http://online.itp.ucsb.edu/online/intobio01/zee/

2. RNA folding

Given an RNA sequende} = {s1, s2, . .., s} of L bases, let us write down the partition
function Z at temperature /5. We will proceed in steps.
First, construct the matrix

Vij= e P mnig i — jl > 4), i i Vi=0, (1)

where g(a, b) denotes the 4 by 4 real symmetric matrix giving the attractive energy
between nucleotides(A, U) etc. We set the diagonal elememsto 0 to indicate the fact
that a nucleotide does not attract itself. The Heaviside funétign- j| > 4) incorporates
the fact that the RNA molecule is not infinitely flexible and we cannot pair nucleotides
separated by less than 4 sites. The attractive potential can be taken(ig be—w6 (R —
r) with w andR the strength and range of the attraction respectively.

Now construct

Z=1+4) Vij+ ) VijVu+-4 D VaVii+---, )
(i) (ijkl) (ijkI)
where(ij) denotes all pairs withi > i, (ijkl) all quadruplets witH > k > j > i, and so
on. Then the partition function is given by

L L-1
Z= / [1% [ ] 7(Fsa-7i1)z. ®)
k=1 =1

The function f (r) can be taken to be, for exampl&y — ) for a model in which the
nucleotides are connected along the RNA heteropolymer by rigid rods of Iéngth
e~r=D?/69% for a model with elastic rods. Note that the saturation of the hydrogen bond
has been incorporated by the requiremientk > j > i, and so on. Once the nucleotide
ati has interacted with the nucleotide jait cannot interact with the nucleotide /atNote

that in (2), only the enthalpy and combinatorics of pairings are included. The integration
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over the atomic coordinates in (3) accounts for the actual topological feasibility of a given
pairing and also for the entropic factor associated with loop formation.

Biologists are interested in the folded configuration essentially at room temperature.
Since room temperature is substantially less than the melting temperature (of ofdzr 80
in other words, the characteristic energy scale of the problem), we want to determine
the ground state configuration of the RNA heteropolymer. In other words, once we have
obtainedZ we would like to extract the term i@ that dominates age tends to infinity
in (1).

We have given a simplified quantitative framework for the RNA folding problem. From
a chemical point of view, it would be appropriate to include also the stacking energies of
couples of complementary base pairs, instead of energies of single pairs of bases. However,
in the following, we will stick with the latter. We will also concentrate on the evaluation
of the “pairing” partition function (2). We expect that the various effects we have ignored,
such as stacking, etc., can be added later as “bells and whistles” to our approach. The
stacking energies for instance can be taken into account by utilizingalB6interaction
matrix between pairs of bases instead of the 4 matrixs(s;, s;) we use here.

3. Matrix theory

What is the connection with matrix theory?

Consider pulling apart the folded RNA structure given in Fig. 2(a).

We obtain the structure of Fig. 2(b) which to physicists are reminiscent of Feynman
diagrams in a variety of subjects: matrix theory, quantum chromodynamics, and so on.

For the sake of definiteness, let us borrow the terminology of quantum chromodynamics.
The dotted lines are known as gluon propagators, and the solid line as a quark propagator.
The secondary structure corresponds to diagrams in which the gluon lines do not cross over
each other, while the tertiary structure corresponds to diagrams in which the gluon lines do
Cross.

The crucial observation, originally made by 't Hooft [11], is that there is a systematic
relation between the topology of a graph and its corresponding powey /6f.1For

.............

@ (b)
Fig. 2. (a) Representation of the secondary structure of an RNA. (b) Representation of the same RNA
stretched.
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instance, planar diagrams are of ordgtv®, and diagrams in which gluon lines cross
are of higher order. We merely have to go to the lasgexpansion, and the diagrams are
classified by powers of/IN2. Note that a somewhat similar formulation in terms of matrix
theory has been used for the meander problem [12].

Consider the quantity

L L
1 N . 1
Z(A,L)= — | Id =22V hiteie) = (T . 4
(L) A(L)/k_l Pre ! N H( + 1) (4)

Hereg; (i =1,..., L) denoteL independent by N Hermitian matrices andi; (1 + ¢;)
represents the ordered matrix prod(tt ¢1)(1+ ¢2) - - - (1 + ¢1). All matrix products
will be understood as ordered in this paper. The normalization faaiby is defined by

L
A(L)=/Hdgpke’%zi,‘(‘/fl)ij"(%w_/)‘ 5)
k=1

Let us refer to the row and column indicesindb of the matrice$<p,-)f; as color indices,
witha,b=1,2,..., N. The matrix integral (4) defines a matrix theory withmatrices.
We can either think of it as a Gaussian theory with a complicated obseryatblg], (1 +

@), or alternatively, by raisingt tr [T, (1 + ¢;) = (097 UTT(+e0] into the exponent, as a
complicated matrix theory with the acticm% Zij (V—l)ij tr(gip;) — Iog[% tr[[;A+eD]).
Another trivial remark is that we can effectively remoﬁer from (4).

The important remark is that the matrix theory [13] defined by (4) has the same
topological structure as 't Hooft's larg&y quantum chromodynamics. There ake
types of gluons, and the gluon propagators are give%by,. As in large N quantum
chromodynamics, each gluon propagator is associated with a fac%ram‘d each color
loop is associated with a factor &f. The reader familiar with matrix theory or large
N quantum chromodynamics can see immediately that the Gaussian matrix integral (4)
evaluates precisely to the infinite series

1
ZAL) =14 Vij+ Y ViVt 55 D ViVt (6)
(i) (ijkl) (ijkl)

Some “typical” terms in this series correspond to the diagrams in Fig. 3.

This differs from (2) only in that the terms with different topological character are
now classified by inverse powers % Thus, the use of the larg¥ expansion allows
us to separate out the tertiary structure, represented in (6) for example by the term
% >_ijky VikViji, from the secondary structure.

Note that the ordered produff; (1 + ¢;) ensures that the diagonal elemetsof the
matrix V do not appear irZ (1, L). We have nevertheless already ggtto 0.

LT T
w

Fig. 3. Graphical representation of a few terms of the partition function.
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The program proposed in this paper is thus to eval@tke L) with V an arbitrary
matrix. OnceZ (1, L) is known we can then insert it into (3) to evaluafte The parameter
% serves as a convenient marker to distinguish the tertiary structure from the secondary
structure. What we offer here is a systematic way of generating refinements to the
calculation ofZ, and hence the free energ@y to any desired accuracy in a well controlled
approximation.

Since inZ(1, L) the quantities 1 and. represent arbitrary labels we can just as well
define

L “
1 1—[ N - ! | | + o
dgﬁ -7 i._'=m(V )ij tr((Pi(Pj) —tr 1 7

(m, n) A(m,n)/k 1 ke / N l—m( " v

where again the normalization is given by

n
A(m,n) Z/ l_[ dok e~ Zij=n (Vi 10ig))
k=m

As we shall see in the following, we will construct recursion relations to evaluate (7)
approximately. These recursion relations can be easily programmed to calculate the free
energy of the RNA chain.

4. Large N

In the matrix representation (4 appears implicitly in the size of the matrices.
In order to study the largd’ limit, we need to extract th&/ dependence explicitly, for
which we have developed the following method. Defiig by G;; = ]_[f:,l(l + ¢;) for
I'—121, Gj—x;=0forallk > 0, andG;; = 1. ThenG, satisfies the equation

G—A+or-1)Gr_1;=24. (8)

Thus, if we defineMy; = 8y — (L+ ¢r_1)8y_1,; then we see thak,; is the inverse of the
matrix M;;; and thus

1 NI (VY (0 00) 4 e
zd. L):A(L)/l_[d‘ﬂke Ve Ve p
k

1 / —le--(V_l)--tr( )
= — dggk e 2 ij ij N@ip;j
A(L) U
X /Hdlﬂz* Ay e VMV )
!

We have used the standard representation of the inverse of a matrix by an integral
over Grassmanian fermionic variablgg and ;. Note the felicitous fact that dé1 =
[dy*dy e~V MY = 1 which allows us to write (9) without a denominator.
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To compactify this representation dffurther we introduc@/ (h);; = M;; +hé; 16 1.+1
and write

10 N1 1
zly=+9 J 1%,V hitreig)) [d d eV MY
L= NahA(L)fl"[¢ke yrdye
(10)
Henceforth, it is understood that after differentiation with respestwee seti to 0.
We can now perform the Gaussian integration @yerthus obtaining
za =12 / dy* dip eSOV =$10") (11)
' N oh

with the free fermion action

SoW* ¥ =D (V) = Vi)V +hivi (12)

J
and the interacting fermion action
1 b
SU ) = =50 DD Ve ¥ Vi Vi ¥ (13)
j.jab
Note that in (13) we have displayed the color indieeendb explicitly.
We next rewrite
1 2

S1(y*y) =+ ZNZK”/K]/]_ trK (14)
in terms of the color singlet variable

K= Z(Vu/) Vo il (15)
Now use the Gaussian representation

e rk? _ é/dA o~ T AP+ tr AK (16)

with the normalization facto€ = [ d A ¢~7 4% Note that even thougK is complex we
can takeA to be Hermitean. (Equivalently, the anti-Hermitean par afrops out.) Putting
it together we obtain

101 N 42 * agooa
ZAL L) ==—= [ dAe 2" [d *dy e i ZaVaiMiiVj 17
1, L) NOhC e vrdye (17)
where
1
Mij=38ij —6i j+1+héi18j 141 +i(Vicyj)2Ai_1 (18)

or in matrix form
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1 0 0 . . 0 h
-1 1+a12 a3 . . air 0
aj, -1 1+ az3 . . ary, 0
M) = . ) ) ) ) ) ) (19)
-1 14+ar-11 O
ajp, azy, ) ary_ o ar_qp -1 1

where we have used the convenient notation
i/Vij Aij = aij fori < j,
i./V,'jA,'jza;(i for j <i. (20)
The point of these manipulations is that in (17) we have now isolated the colordndex
so that the integral ovef* andy factors intoN copies of the same integral, thus giving

191
Z(1, L) = N%E/dA e~ 2" A% detm (A))N

:iii/dAefgtrAhNtrlogM(A). (21)

At this point, we can differentiate with respectit@nd set: to 0, obtaining the alternative
form

Z(.L)= % / dA e~ ZUASENTION W)y =10p), o ). (22)
In this expression,

Mi; = 6;j _Si,j+l+l'(vifl,j)%Aifl,j- (23)
Let us introduce the action

S(A) = %trAz —trlogM(A), (24)
and define the average of an “observalieby

(0)= %/dA e N5, (25)

(Note the nonstandard normalization used here.) Then, our result can be summarized
elegantly as

Z(A, L) =(M" (A)r411). (26)

At this point, as remarked earlier, we note that the quarxity, L) can obviously be
generalized tdz (i, j): after all, the site labels 1 anH are arbitrary. Then we have the
appealing result that

Z(@, j)=(M"Y(A)j414) forj>i. (27)
Itis also useful to introduce the free action

So(A) = %trAz (28)
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and to define

1
(O)o== f dAe NS0, (29)
Then we can also write our result as
190
Z(1, L) = ——((detM (A)N).. 30
1, L) N8h<( ()))0 (30)

Remarkably, it turns out that we will need both the representations (26) and (30) later in
a single calculation.

Incidentally, our formulation of the RNA folding problem can be immediately adapted to
the marriage problem (or bipartite matching problem) [14—17], one of the classic problems
in combinatorial optimization. We will mention only the simplest version here. Label
(with L even) individuals by the index=1,..., L where the individual is male for
i odd and female fo¥ even. Define a matriw;; = 3(1 — (=1)*/)e PEii where E;;
represents the energy cost of a marriage betweand j and its negative provides a
measure of happiness. Referring back to (2) we see that we want to extract,in)
all the terms withL /2 powers ofV, for example the ternVy4Vag--- Vp_12 = e #Emoul
with Etotai= E14+ E38+ - - -+ E1_1.2. Since we now want to include possible crossings
in the Feynman diagram language we can set the number of csldesl. Thus, from
(21), we have immediatelg (1, L) = - 1 [dA e~2"4% detM(A). Referring to (19) we
see that the differentiation with respect/tcand setting: to 0 amounts to replacing the
L+ 1byL + 1 matrixM(A) by theL by L matrix obtained by deleting the first row and
last column. Furthermore, since we want the terms Wit powers ofV, that is, with
L powers ofv%, we can set the 1's andl’s in this matrix to 0. Denoting the resulting
matrix by M(A), we obtain the following representation for the marriage problem

Z(L) = %/dA e~ 22 detM(A). (31)

Clearly, the representation given here can be generalized in a number of directions, for
example, by including individuals who remain single.

It is easy to see how this representation works: the Gaussian integration insures that in
detM (A) only the appropriate terms are picked out.

5. Steepest descent

The fact that we have been able to display explicitly Malependence is crucial and
allows us in principle to carry the/IV expansion to any order. The standard strategy to
evaluate integrals such as (22) is of course to use the method of steepest descent [18,19].

To leading order the steepest descent approximation is easy enough to carry out. The
stationary point is determined B2 = 0, that is

1
A =i(Vir) 2Gi-1 k+1 (32)



H. Orland, A. Zee/ Nuclear Physics B 620 [FS] (2002) 456-476 465

P
e

j i+l

Fig. 4. Graphical representation of the Hartree recursion relation. The thick line represents the
propagatoiG.

where we find it useful to define
(33)

Notice that with this definitiorG;; is defined fori from 0 to L — 1 and forj from 2 to
L+ 1 The identitij M;; (M—l)jk = §;x can now be written as

Gij= (Mﬁl)wl’j.

Git1x — Gik — Z Vit1,jGij+1Gj—1k = 8iv2.k- (34)
J
Referring to (22) and (27) we see that to leading order in steepest de&c¢ent) is just
M_l(A)j+1,i = G; evaluated at the stationary point.

Eqg. (34) has already been written down in the literature [7-9,20-25] and is known as
the “Hartree approximation”. It has the obvious interpretation (see Fig. 4) that to lowest
order the additive effect of including one extra nucleotide labelled by 1 to the RNA
heteropolymer can be described by pairing that nucleotide to the nucleotide labeled by
which separates the heteropolymer into two segments, one fronj and the other from
j+1toL + 1. We then sum over all possibjeof course.

In principle, steepest descent gives a systematic expansi@ilofl) to any desired
power of% by expanding the exponent and the observable around the saddle-point. In
the present context, this implies that the full three dimensional structure of the RNA can
be obtained by expanding around the secondary structure. In particular, the higher order
terms do not disrupt the secondary structure, but merely add new interactions, in addition
to the existing secondary pairing. This is in marked contrast with protein folding, where it
is known that there is a strong correlation between secondary and tertiary structure.

In practice, however, it proves to be quite tedious to calculatg\%ghterms explicitly. In
the integral in (22) we are now to repladeg; by A;; + x;;/~/N whereA;; is determined
by (32) and (34). A straightforward calculation shows that

o0

_1)P
Z(A,L)= /dx exp(—%trx2 — %tr(M‘lc)2 -y p(NT];)Z—ltr(M_lc)p>
p=3

1
Abgrape] e
+1,

where M1 is related toG through Eq. (33), and;y = VvVicir xi—1p. The systematic
corrections toZ are obtained by expanding (35) in powers giVi/2, By symmetry, no
half-integer powers oN remain in the expansion ¢f.

The first thing to evaluate is the propagator of the fluctuation figJdsThis is just
the inverse of the kernel of the quadratic form appearing in the exponent of (35). This
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k m k m k i m
A ) +_'__6_'_A+
1 n 1 n 1 J 0
k m k m k m k m
= + Lo+ + +
1 n 1 n 1‘ n 1 n

Fig. 5. Graphical representation of the Bethe—Salpeter recursion relation. The dotted lines represent
factors\/Wj while the dashed lines represent factéfs. The solid thick lines represent Hartree
propagators;. The Hartree propagators being directed, the arrows denote the direction of increasing
spatial index.

propagaton\;; s, is in fact a scattering amplitude and satisfies a form of the Bethe—Salpeter
equation [26]

Akl,mn = SkmOni + Z Vk:t/zV,'l'/szfl,i+1ijl,l+1Aij,mn (36)
1y
whereG are the Hartree propagators (34). In Fig. 5, we show a graphical representation of
this recursion equation, as well as the series of graphs it resums. It is clear that this equation
resums all the possible ladder (or rainbow) diagrams to this order.

This equation is to be solved for the particular sequence studied. The scattering
amplitudeA defines the contractions of thefields, and thus its knowledge allows us in
principle to calculate (35) to any order. Note that as usual in field theory, only contractions
which are linked to the operator that we calculate are to be included. (This reduces
considerably the number of contraction.)

A fairly simple calculation allows us to show that théNL correction vanishes identically
(see Appendix A). This result appears true by drawing a few graphs, but this gives an
algebraic proof.

It is easy to see that we have to expand (35) @®in order to calculate the free
energy to orderNiz. The calculation, although cumbersome, is straightforward. The free
energy reads

Z(L,L)=G +1 1BT+1BTT 1BT3
, =Ui1L NZ 515 12134 16213

1 1,1 .
— —BoT. — B>T5 — = B3T: Ba | M , (37
g BaTa+ 1gBaTs — 2 BsTs + 4) }L+1,1> (37)

where we have used the notation

-1
Dy = Mmm’\/ Vin'=1,n Xm'—1,ns
’

m

(Bp = (Dp)kl’
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T, =trB,. (38)

In (37), the bracket means that the Wick theorem should be applied to contract the fields
x;» which appear in this expression, their contraction being given by the karnel

The calculation of the correction to the free energy is possible numerically for not too
long RNA sequences. Work in this direction is in progress.

Because of the complexity of the (exact) ordgtvE obtained in this approach, we
found it simpler to generalize the Hartree recursion equation to incorporate some residual
interactions between the loops and bulges.

6. Recursion approach

Two approaches can be used to derive recursion relations for the partition functions. One
is detailed in the following, whereas the other one is described in Appendix B.
A possible approach is to take the expression in (30)

1
ZA L=~ ((detm(A)™), (39)

d
oh
and try to relateZ(1,L + 1) to Z(1,L). In other words, we would like to relate
((detMy1(A))N) to ((detM(A)YN) where the subscript ol keeps track of the
different matrices in the discussion. Note thég is anL + 1 by L + 1 matrix. Explicitly,
as noted before, the + 2 by L + 2 matrix M 1 has the form

1 0 0 . . 0 h
-1 1+a12 az3 . . b1 0
al, -1 - - . b O

: : : ~1 1+b, O
bbb, b -1 1

where for convenience we have denoted
i/Vij Aij = aij fori <j <L,
ivViry1Aip+1=b; fori <L,
i/Vij Ajj zajl- forj <i<L,
iv/Vig1,j ALy, =bj» for j < L. 41)
Our strategy is to first perform the Gaussian integration overbttge in evaluating
((detMy 1(A)Y), keeping in mind that we need the terms of oréleiThis method of
integrating out a row and a column has also been used in random matrix theory [27].
We briefly outline the procedure. Writdf; 11 = M;1(b = 0) + B where B is the

matrix extracted from (40) upon keeping only the entries which depend drstaadb™’s.
Expand(detM; 1 1(A))" in powers ofB and then perform the Gaussian average over the
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b’s andb*’s, using(bib;f) = %6,-]- V; L+1. After some arithmetic, we obtain
L 9
N 1 -1
ZAL+D)=ZA L)+ v,-,L+1<<detM) [( M L+2> M1 g4
j=1

- —M M; . (42)
Y L+1,L+2 J.j+1 0
We have suppressed the subsciipt- 1 on the matrixM on the right hand side. It is

understood that this expression is to be evaluatéd=a. Noting that the matrix%—/‘,f is
particularly simple and thaM—l)L+2,L+2 =1, we find that

L
1 1 1
ZA L+1)=2zQ, L)+X;V, L+1< M1y aM;T - M, 1M”+1> (43)
J
Using the definition of the connected expectation value
(AB) =(A)(B) + (AB)c

we note, as is well-known, that the connected part is of ordat?111] and we can thus
write

L
ZALL+1) =271 L)+ Z v, Hl(MleJ H)(M;})
j=1

L
-1 -1
+ Z V./'vL+1<ML+1,j+1Mj,l>C
j=1

L
1 1
N Z Js L+1 L+1 le /+1>c (44)

Recalling (27) we recognize that the quantltmi!;LJrl ,+1 y and(M i1 )appeanng in the
second term on the right hand side of (44) are nothingAyt+ 1, L + 1) and Z(1, j)

respectively. Thus, if we keep only the first two terms on the right hand side of (44) we

obtain the closed recursion relation
L
ZAL+D>ZA L)+ VirpZ HZG+1 L+1). (45)
Jj=1

This is precisely the recursion relation in the Hartree approximation (45) mentioned

earlier.

As announced in the introduction, the formulation given here offers a systematic way
to go beyond the Hartree approximation. We expect the third and fourth term on the

right hand side of (44), when evaluated to leading ordeliirto give the corrections
of order— It is intriguing then that the superficially S|m|lar objethL+l ]HM;%)c
and(MLi1 1M;}+1)C must be of orderN—2 and orderﬁ respectively. We note however
that a “backward-propagating object” which we defind\dé]‘g(1 with k > j makes its first
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Loy iz o (2N

Fig. 6. A few graphs corresponding to then? term.

- .

@ (b)
Fig. 7. (a) A few one particle irreducible graphs. (b) The third graph of Fig. 7(a).

appearance iWL_ille;Jl.H)c. All other terms in (44) involve only forward-propagating
objects.

We can of course calculate (44) explicitly for smalin order to check our formulation
and the order of the various termsﬁjn The result for. =5 is shown graphically in Fig. 6.
While the recursion relation (44) has an appealing structure, we are not able to evaluate
the two objects(ML*iLjHMjfi)c and (M;iLlef}H)c and express them in a simple
form. Neither should we be able to do that. Our experience in field theory, for example the
Dyson—-Schwinger equation in quantum electrodynamics, indicates that recursion relations
generically do not close: new objects appear in the right hand side. There is no reason why
<Mfi1,,/+1M,;i)C should be expressible in terms @if;;*). New objects, corresponding
to vertex functions in field theory, must appear.

6.1. Recursionrelation

At this point, all we can do is to inspect the set of Feynman diagrams to obtain
an approximate recursion relation f@t(i, j). We propose the following approximate
recursion relation. We propose the following recursion relation. Gi¥én j) for all i
and; satisfyingj —i < L — 1, we obtainZ(i, j) for all i andj satisfyingj —i < L as
follows.

First, definezP'(i, j) as the one-particle irreducible (1PI) part 8, j), that is the
sum of all those diagrams A (i, j) that do not fall apart into two separate pieces when a
quark propagator is cut. Some examples are shown in Fig. 7(a).

In Fig. 7(b), we show a different representation of the third graph of Fig. 7(a).

The concept of, and the necessity of introducing, one-particle irreducibility is of course
the same here as in field theory such as quantum electrodynamics.

Second, define the vertex functidy,, for n > j > m by

i 0]
ity = [1 - > ijm}zlp'(m, n) (46)
J

n<kAj<m
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PR
- ~

Fig. 8. Graphical representation of the recursion equation to ordd® 1 The black triangle
represents the vertex functidry,,, .

Fig. 9. A contribution of order AN? generated by the modified recursion relation.

keeping terms to the desired order if\. Using the language of quantum chromodynam-
ics, this equation is actually easy to describe in words. The vertex funEtjpriescribes
a quark propagating from: to n and interacting with a gluon at site. The operator
[1- Zk# Vik %} simply insures that there is not already a gluon attached to th¢ site

(see Fig. 7(a)). The relation betweé}, and ZP(m, n) has the same form as the Ward
identity in quantum electrodynamics.
Third, we calculate fok + 1 > i

k
ZGik+D=ZG.k)+ Y Vikxa ) ZGm =D Zn+1,k) (47)
j:l m,n

with the boundary conditioZ (i,i) =1, Z(i,i — 1) =1, andZ(1, 0) = 1. The meaning of
this equation is expressed graphically in Fig. 8.

The recursion is approximate because it introduces higher order ternid/ithan the
order we are considering.

We have checked this equation explicitly foup to 6. A graph generated to ordeN?
is displayed in Fig. 9.

These equations are adequate to orgé¥2, but not to order IN*.

We summarize the steps of the new recursion relation.

e Assume the partition functiorié(i, j) are known for all pairsi, j) suchthat — j <.

e Calculate all the one-particle irreducible functidfs '(m, n) to the appropriate order
in 1/N; this can be done by cutting the quark linediin, n) at any site (m <i < n)
between the extremities of two gluon propagators, and keeping only the graphs which
do not fall apart into two separate pieces. If no gluon is connected to thg fiten
this contributes td! .. When we attach the gluon to the sitethis may or may not
disrupt an existing loop, and so the order jfiNLmay or may not be changed by one
power.

e Insert this functionl” and all the function< (i, j) in (47) to calculate the partition
functions with one more base.

e lterate the process.
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Fig. 10. A contribution of order AN? sterically forbidden.

This procedure allows obviously to evaluate the free energy of a given RNA sequence
recursively. Regard& (m, n) as the element in theth row andnth column of a matrix.
We impose the boundary conditiodsj, j) = 1 andZ(j, j — 1) = 1. We then use (47)
to expand the matrix to ever larger size, moving “towards the northeast”. In numerical
evaluation, we no longer need to know the origin of the paramet¥fiwe can simply
take N = 1. The factor ZN? has just allowed us to extract the most relevant diagrams
beyond the Hartree theory.

To find the “ground state configuration” for a given RNA sequence we simply write (47)
forZ(1, L)

L-1
ZAL)=ZLL-D+> Vi) ZAm=DIiZn+1.L—1) (48)
j:l m,n

and evaluate it “backwards”. We replagél, L) by the largest term on the right hand side

ZA, L)y~max{Z(1,L-1), V;rZ(1,m— VO, Zm+1,L— 1} (49)
J.m,n

The largest term, in turn, compriseés of lower order, for which we can apply
this bactracking algorithm. Repeating this process, we obviously obtain the dominant
configuration.

In fact, since the lowest energy configuration obtained in this way is not necessarily
feasible in real space, a better strategy could be to use the backtracking algorithm to
generate a set of lowest energy configurations, and check which one can be realized with
real molecules with their rigidity and chemical constraints. For example, configurations
such as the one of Fig. 10 with crossing “gluon” lines should be discarded, as they are
forbidden by steric constraints.

7. Conclusion

We have shown that the RNA folding problem can be mapped onto afargatrix field
theory. The dominant term independent) is the usual Hartree theory, which is known
to generate secondary structures. TH&/ Icorrection term vanishes, and the correction
of order I/N? generates the pseudo-knots or tertiary structure. The standard Hartree
recursion relation is then replaced by a corrected recursion relation. The resulting three
dimensional structure can be obtained by backtracking the recursion relation. The spatial
feasibility of this tertiary structure (which remains to be checked) is due to the fact that
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the 1/ N expansion classifies diagrams in terms of their topology. What remains to be done
is to include the loop entropy, stacking energies and a numerical study of the recursion
equations to order/IN?2, together with the backtracking algorithm. This will be presented

in a forthcoming paper.
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Appendix A

In this appendix, we show that th¢ ¥ correction to the free energy vanishes identically.
We first note that Eq. (21) can be recast in the form

N 8h
Z/dA* dA dA;kl/ dA”/A* e*Nzl<1/(trA”/Azkl,thrAA*)+Ntr|OgM(A”/,A) (A.l)

10 _ *
Z(L,L)=— /dA;k[,dAU/ e N Licr WAy Ay +NtrlogM(Ay) |h=0

where
1 0 0 . . 0 A
-1 1+ar ais . . arr 0
aj, -1 1+ az3 . . azr. 0
M(Ay, A) = : :
-1 1+ar-11 O
ajy, azy, ’ ay o Ap_qr -1 1

The steepest descent method applied to (A.1) yields

-1
A=0, A* = ML+1,1’

whereas the definition for all the othér; and Aj;, are identical to those of Sections 4
and 5. The correction of ordey % to Eqg. (35) can be easily recast in the form

1
zW = / da}, dayy da™* da exp(— trajpa), —traa* — > tr(Mo_lc)z)

o e e R g

L+1,1
with the notations of Sections 4 and 5 amfy denotes the matrid/ evaluated at the
stationary point. It is clear that* occurs only in the term tra* of the first line and in
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the termcz*tr(M(;lc)3 of the second line of (A.2). This second term can be integrated by
part in favor ofa, to remove all dependence afi except in the exponent. Once it is clear
thata* occurs only in the exponent, we recognize the holomorphic representation of the
8-function. Thus, the integration over implies that we can set = 0 everywhere. This
being done, we see that allthe terms ks, . . ., ], anda3, , ..., a}‘i_l’L are present only

in the exponent (in the &;/a;;, term). Therefore, we can integrate them out, and the result
is again a set of-function which impose

app=---=ayy=azr=---=ar-1.=0.

This procedure can be carried out recursively to “eat up” alkthanda, leading to the
vanishing of the 1N correction (A.2).

Appendix B
B.1. Recursion

An alternative strategy to evaluatirig recursively is by integrating oup, 41 in the
expression foZ (1, L + 1). For notational simplicity, let us define? = (V"Y1 141,
M=g¢; 1 andT = Zle(V*l)Hl,i(pi. Evidently, we have to do two Gaussian integrals
overM:

2

/dMe—Ntr(TM+ =C(u, N)e 2;1 22T (B.1)

and

2

2 N
dMe NU(TM+15M?) _ic(ﬂ, N)e+2uz ur T, (B.2)
u2

where (B.2) is obtained by differentiating (B.1) with respect to the m&triX hus, after
integrating outyp; 41 in Z(1, L 4+ 1), we find that the “action’zij(V*l)ij tr(pip;) has
been replaced by the effective actidn,; (V=1);; tr(p;p;) where(V=1);; = (V-1); —

(V—l),-,Hlm(V—l)LHJ. Itis easy to see thaf is the L by L matrix obtained
by crossing out the last row and column of the- 1 by L + 1 matrix V, as we might have
expected. Putting these steps together we obtain

L 1 L
ZLL+1)=Z@1, L) - (v L+1’,<Ntr(]_[(l+¢i)><pz ,

V= l)L+lL+1 - i1
(B.3)

where (]’L-Lzl(l + ¢;)) is ordered as before. The expectation value of a mafrix
constructed out of the;’s is defined by

1 1y (00
=310 f [Tdowe™ 22t Duteng, (B.4)
k

In other words Z(1, L) = (£ tr[];(1+ ¢1)).
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To evaluate(% tr(]‘[.L: (1+ ¢i))¢r) we follow the standard procedure of replacing

i —N3 Y, (Vo 1),,tr(<p,w,)_)__ZVlm 8 ~N 33 (VY trig))
k=1 S0

Integrating by parts, we finally obtain

ZA L+1)=2(@, L)+ZVL+1I<<£U<1_[(1+¢: )%tr< I1 (1+¢,)>>

j=k-+1
(B.5)

In other words, in (B. 3) we have Wick contracted with ¢, in the ordered product
]_[ 1A +9). Evidently, + ¥ tr(]_[ (1 + ¢i)) isto be interpreted as 1 far= 1. Similarly,
,%, tr(l‘[]=k+1(1+ @) is to be interpreted as 1 far= L

In principle, we can extract what we need from this recursion relation (B.5). We
emphasize that (B.5) is derived without taking the laigdimit and holds for finiteN,
includingN = 1.

B.2. Large N expansion

We can now perform a larg® expansion, giving us a systematic way of evaluating
Z to any desired order of/V2. In the language of quantum chromodynamics, quantities
in which the indices of the matrices; are summed over such %tr(]‘[f:ll(l + ¢i))
are known as color singlet operators. It is well known [11] that given two color singlet
operatorsA and B, the expectation value factorizes to leading order in la¥ge

(AB) =(A)(B) + (AB)c (B.6)

with the connected correlation function B) ¢ suppressed by a factor of @y N2) relative

0 (A)(B). It is easy to see the validity of (B.6) by drawing a few diagrams such as those
in Fig. 8(b). Connected correlation functio¥$B)¢ have been intensively studied [13] in
the matrix theory literature and a good deal is known about them. Thus, we can write in
(B.5)

o) )
[ i )

<£tr(l_[(1+<p, )—tr< E[H(lﬂa, >>C (B.7)

We immediately recognize that first term in (B.7)&€L, k — 1) Z(k + 1, L). By definition,
the connected correlation function

1 k-1 1 L
Ze(Lk—1Lk+1,L) E<Ntr(l_[(1+<p,~)>ﬁtr< [ (1+¢,-)>>
C

i=1 Jj=k+1
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is evaluated by contracting a matgix from one of the traces to a matrg from the other
trace. Thus the exact recursion relation is given by

L
ZLL+D)=ZA L)+ Y ViaxZ(Lk—-DZ(k+1,L)
k=1
L
+ ) ViyiZe(Lk—Lk+1,L). (B.8)
k=1

This gives an alternative representation of (44). Evidently,

1
. gl -1 1
Ze(Lk=Lk+1,L) = (M1, M 7)c — ﬁ(ML+1,1Mk,k+1

In principle, we can take the exact recursion relation (B.8) and evaluate the two terms on
the right hand side to any desired order jfivland thus generate, given an RNA sequence,
secondary structure, tertiary structure, ad infinitum.

o (B.9)
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