
Chapter 11

Orthogonal Polynomial Ensembles

11.1 Orthogonal Polynomials of Scalar Argument

Let w(x) be a weight function on a real interval, or the unit circle, or generally on some curve in
the complex plane. Without being too technical we think of w(x) as piecewise continuous and we
allow for delta functions. We will let I denote the support of w. We require that w(x) have finite
mass, i.e.,

∫
I w(x)dx is finite.

Every famous mathematician seems to have a set of orthogonal polynomials:

Example 1: Legendre Polynomials: Let w(x) = 1 on [−1, 1]. The polynomials are named for
Legendre and denoted Pn(x).

Example 2: Chebyshev Polynomials: w(x) = (1−x2)−1/2. The polynomials are denoted by Tn(x)
and satisfy Tn(cos θ) = cos(nθ). For example cos 3θ = 4cos3(θ)− 3 and T3(x) = 4x3 − 3.

Example 3: Hermite Polynomials: w(x) = e−x2/2 on the whole real line. The Hn(x) have a
special place in random eigenvalue history because of the Gaussian Ensembles.

Example 4: Laguerre Polynomials: w(x) = xγe−x/2. For every parameter γ there is a set of
Laguerre polynomials denoted Lγ

n(x). These polynomials play a vital role in the Wishart matrices
of multivariate statistics.

Example 5: Jacobi Polynomials: w(x) = (1 − x)γ1(1 + x)γ2 . This is the granddaddy of all the
above. When γ1 = γ2 = 0, we obtain the Legendre Polynomials. If γ1 = γ2 = −1/2, we obtain
Chebyshev. Taking limits appropriately we can obtain the Hermite and Laguerre Polynomials.

There is a beautiful relationship among all of the following quantities

Quantity 1: The moments sk =
∫
I x

kw(x)dx

Quantity 2: The sequence of Orthogonal Polynomials p0(x), p1(x), . . ., where
∫
I pj(x)pk(x)w(x)dx =

δjk. It is assumed that pj(x) has degree j.

Quantity 3: Infinite Symmetric Tridiagonal Matrices (also known as Jacobi matrices). The
three term recurrence for the orthogonal polynomials is often best seen as a tridiagonal matrix.
The characteristic polynomial of the top j by j section is pj(x). If one has a finite symmetric
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tridiagonal matrix then one obtains a finite sequence of orthogonal polynomials corresponding to
a finite measure.

Quantity 4: The eigenvalues and the first row of the eigenvectors of the above tridiagonal matrix
as captured in wi(x) =

∑
q2i δ(x − λi).

Quantity 5: Gaussian Quadrature: The abscissas are the eigenvalues of Tn, and the weights are
the q2

i .

Quantity 6: Continued Fractions: If we evaluate the continued fraction given by the diagonals and
the offdiagonals squared, we obtain a sequence of numerators and denominators. The numerators
are the orthogonal polynomials and the denominators are closely related.

Quantity 7: Random Variables: If we normalize w(x) to have integral 1, then we have random
variables with that density. For example, the Hermite density corresponds to the normal distribu-
tion, the Laguerre density corresponds to χ distributions, and the Jacobi density corresponds to
the F (check this!!!!!!!!!!!!!!!) distribution.

Quantity 8: Jump Condition: One can seek function Y (x) in the complex plane that are defined
off of the support of w(x) and satisfy a jump condition:

lim
ε→0
{Y (x+ iε)− Y (x− iε)} = πn(x)w(x),

where all we specify about πn(x) is that it is a polynomial of degree n. We also require the
growth condition Y (x) = O(x−n) as x → ∞. The solution is unique. πn turns out to be the
nth orthogonal polynomial, and Y (x) is its moment generating function. For more on this see the
section on Riemann Hilbert problem.

Quantity 9: The Lanczos Tridiagonalization Algorithm

11.2 Orthogonal Polynomial Ensembles and Matrix Models

Let ω(x) be a weight function. For parameters β we define the multivariate weight function:
ωn(x;β) = Δβ

∏n
i=1(ω(xi)), where

Δ =
∣∣∣∏(xi − xj)

∣∣∣ .
Thus Δ is the absolute value of the Vandermonde determinant, i.e., the determinant of the matrix
(xj−1

i )i,j=1,...,n.

When β is understood from context, we may suppress it in the notation.

Definition: Random Matrix Models We say that we have a random matrix model for the
multivariate weight function ωn(x;β), if we have a random n×n matrix An whose eigenvalues have
ωn(xβ) as a joint density.

Constructing nice random matrix models is a central problem in random matrix theory. It
would be cheating to say, let x be a random variable with multivariate density ωn(β) and take An

to be the diagonal matrix with x on the diagonal.

11.2.1 The Cauchy-Binet Theorem and its Continuous Limit

Let C = AB be a matrix product of any kind. Let M
( i1...im

j1...jm

)
denote the m×m minor

det(Mikjp)1≤k≤m,1≤l≤m.



In other words, it is the determinant of the submatrix of M formed from rows of i1, . . . , im and
columns j1, . . . , jm.

The Cauchy-Binet Theorem states that

C

(
i1, . . . , im
k1, . . . , km

)
=

∑
j1<j2<···<jm

A

(
i1, . . . , im
j1, . . . , jm

)
B

(
j1, . . . , jm
k1, . . . , km

)
.

Notice that when m = 1 this is the familiar formula for matrix multiplication. When all matrices
are m×m, then the formula states that

detC = detAdetB .

Cauchy-Binet extends to matrices with infinitely many columns. If the columns are indexed by a
continuous variable, we now have a vector of functions.

Replacing Aij with ϕi(xj), Bjk with ψk(xj), we see that Cauchy-Binet becomes

detC =

∫
· · ·

∫
det(ϕi(xj))i,j=1,...,n det(ψk(xj))k,j=1,...,ndx1dx2 . . . dxn .

where Cik =
∫
ϕi(x)ψk(x)dx, i, k = 1, . . . , n.

Apparently, this continuous version of Cauchy-Binet may be traced back to an 1883 paper by
Andréief [9].

11.2.2 Cauchy-Binet Examples

Corollary 11.1. Let A ∈ R
n,p,D ∈ R

n,n. We have

det(ATDA) =
∑

i1<...<ip

A

(
i1 . . . ip
1 . . . p

)2

di1 . . . dip

= Pl(A)T

⎛
⎜⎜⎝

. . .

di1 . . . dip
. . .

⎞
⎟⎟⎠

i1<...<ip

Pl(A)

Example 11.1. Let di =

{
1 if i ≤ l
0 if i > l

We have Al = A(1 : l, :) and then

det(AT
lAl) =

∑
All i≤l

A

(
i1 . . . ip
1 . . . p

)2

Example 11.2. Let di =

{
1 + z if i = 5

1 if i �= 5

Also let ATA = Ip.

det(AT

⎛
⎜⎜⎜⎝

1
. . .

1 + z
. . .

1

⎞
⎟⎟⎟⎠A) = 1 + z

∑
Some i=5

A

(
i1 . . . ip
i . . . p

)2

= 1 + z‖A(S, :)‖2



Example 11.3. Let di = Zi symbolic

det(ATDA) =
∑

A

(
i1 . . . ip
1 . . . p

)2

Zi1 . . . Zip

Displays squares of elements of Pl(A) with symbolic labels.

Example 11.4. Let di = 1 + Zi

det(ATDA) =
∑

A

(
i1 . . . ip
1 . . . p

)2

+
∑
Some
Zk=i

ZiA

(
i1 . . . ip
1 . . . p

)2

+
∑
Some
Zk=i
ik=j

ZiZjA

(
i1 . . . ip
1 . . . p

)2

+ · · ·

11.3 Orthogonal Polynomial Ensembles when β = 2

In this section we assume that β = 2 so that ωn(x) = Δ2
∏n

i=1 ω(xi). For classical weight function
ω(x), Hermitian matrix models have been constructed. We have already seen the GUE corre-
sponding to Hermite matrix models, and complex Wishart matrices for Laguerre. We also get the
complex MANOVA matrices corresponding to Jacobi.

Notation: We define φn(x) = pn(x)ω(x)1/2. Thus the φi(x) are not generally polynomials, but
they do form an orthonormal set of functions on the support of ω.

It is a general fact that the level density is

fω(x) =

n−1∑
i=1

φi(x)
2 .

Given any function f(x) one can ask for

E(f) ≡ Eωn(
∏

(f(xi)) .

When we have a matrix model, this is E(det(f(X)).

It is a simple result that E(f) =
∫

(det(φi(x)φj(x)f(x))i,j=0,...,n−1dx. This implies by the con-
tinuous version of the Cauchy Binet theorem that

E(f) = detCn,

where (Cn)ij =
∫
φi(x)φj(x)f(x)dx.

Some important functions to use are f(x) = 1+
∑
zi(δ(x−yi)). The coefficients of the resulting

polynomial then is the marginal density of k eigenvalues. [say slightly better]

Another important one is f(x) = 1 − χ[a,b], where χ[a,b] the indicator function on [a, b]. Then
we obtain the probability that no eigenvalue is in the interval [a, b]. If b is infinite, we obtain the
probability that all eigenvalues are less than a, that is the distribution function for the largest
eigenvalue.



11.4 Orthogonal Polynomials of Matrix Argument

Let x = (x1, . . . , xn), for any β we can define the multivariate orthogonal polynomial pκ(x) by the
condition that ∫

pκ(x)pν(x)dωn(x;β) = δκν .

Here κ is a finite non-increasing, sequence and the leading term in pκ(x) = xκ.

These orthogonal polynomials are symmetric. Indeed the set of polynomials of degree ≤ k form
a basis for the symmetric polynomials of degree ≤ k.

Conjecture: Let ω(x) = 1 on the unit circle in the complex plane. Then the orthogonal
polynomials are the Jack polynomials. These polynomials are homogeneous.

Given any n× n matrix, we can define pκ(X) as pκ(λ1, . . . , λn). Since pκ is symmetric, we see
that pκ(X) is a polynomial in the elements of X. (For example the determinant, the trace, or any
coefficient in the characteristic polynomial can be expressed as a polynomial in the entries of the
matrix.)

When β = 1, 2, and 4 we can define a measure ω(X) on real symmetric, complex Hermitian, or
symplectic self-dual matrix such that

∫
pκ(X)pν(X)ω(X)dX = δκν . Here ω(X) =

∏
ω(λi(X)) =

detω(X).

Alternatively there is a measure on real tridiagonal matrices for any such β. Similarly we can
construct a random tridiagonal matrix whose eigenvalue probability density is ωn(x;β).


