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51 On the eigenvalues of random matrices 

distributed. It is not hard to construct a proof along these lines. Next consider 

J (Tr(m))O(Tr(m))b dm. 
u. 

This has a group-theoretic interpretation: (Tr(m))O is the character of the ath 
tensor power of the n-dimensional representation of Un. The integral is the sum 
of the multiplicities of the common constituents of the ath and bth tensor powers. 
In particular it is an integer. By the first remark it converges to E(ZOZb) with Z 
complex nonnal. These last moments are integers as well. Since integers conver
ging to integers must eventually be equal, we expect equality of moments in all the 
cases of this paper. It is interesting how rapidly this takes hold. 

Remark. The physics literature works with a unitary, orthogonal and symplectic 
ensemble. While the unitary ensemble is the one considered here, the orthogonal 
and symplectic ensembles differ. Their orthogonal ensemble consists of the 
symmetric unitary matrices. This is Un/On. Their symplectic ensemble consists of 
anti-symmetric unitary matrices. This is U2n / SPn' We hope to carry through the 
distribution of the eigenvalues on these ensembles along the lines of the present 
paper. 

1. The unitary group 

A complex nonnal random variable Z can be represented as Z = X + iY with X 
and Y independent real nonnal random variables having mean 0 and variance t. 
These variables can be used to represent Haar measure on the unitary group Un in 
the following standard fashion. Fonn an n x n random matrix with independent 
identically distributed complex nonnal coordinates Zij' Then perfonn the Gram
Schmidt algorithm. This results in a random unitary matrix M which is Haar 
distributed on Un. Invariance of M is easy to .see from the invariance of the 
complex normal vectors under Un. 

This representation suggests that there is a close relationship between the 
unitary group and the complex nonnal distribution. For example, Diaconis and 
Mallows (1986) proved the following result. 

Theorem O. Let M be Haar distributed on Un. Let Z be complex normal. Then, 
for any open ball B, 

lim P{TrM E B} = P{Z E B}. 
n-oo 

The following result generalizes Theorem O. 

Theorem 1. Fix k in {I, 2, 3, ...}. For every collection of open balls B j in the 
complex plane. 

k 

}!.~ P{Tr(M) E Bh Tr(M2) E B2, ... ,Tr(Mk) E Bk} = nP( JJZ E Bj ). 

0
j=l-h(,(J"1"'1. .. 
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2 7 10 

3 5 9 

I 
1---+-----11---+-----' 

Figure 33.3: A Ferrers diagram for (4,3,2,2) and example of a Young tableau with shape A 

pairs of Young tableaux. 

Let A = (AI, A2,"" Ak) be a set of integers such that L Ai = n and Al :::: A2 :::: . .. An. Then 
we say A is a partition ofn and write A I- n. We denote the number of entries in A by IAI, which in 
this case is equal to k. In the special case where A (1,1, .... 1) we write A In. 

A Ferrers diagram with shape A is a set of cells as shown in Figure 33.3, where row i has Ai 
cells. A standard YounQ tableau is a Ferrers diagram with the numbers 1,2, ... , n in the cells such 
each number is used once, and the entries increase along each row and down each column. 

The hook length he of a cell c is the number of cells to the right of c in its row plus the number 
of cells below c in its column plus the cell c itself. Thus in the tableau in Figure 33.3 the hook 
length of the cell containing 5 is he = 4, and the hook length of the cell containing 8 is he 2. 

An interesting question is this: how many standard Young tableaux are there of shape A? The 
answer is surprisingly simple, and given by the following theorem. 

Proposition 33.2. (Hook Formula) Let d).. be the number of standard Young tableaux of shape A. 
Then: 

d)..=~ (33.1)
I1c he 

If we look at the tableau in Figure 33.3 we can calculate the number of tableau of that shape: 

d ~ Il! 1320(4,3,2,2) ~ 7.6.3. 1 ·5·4· 1·3.. 2 ·2· 1 

This is far too many to explicitly verify, so we can look at an easier example. Consider A (3,2) I- 5. 
The hook length formula tells us we can only construct 120/(4·3·1·2·1) 5 standard Young 
tableaux. These are shown in Figure 33.4. It is left as an exercise to the reader to prove there exist 
no more standard Young tableaux of that shape. 

C!Iil2J 
~ 

Figure 33.4: All standard Young tableaux of shape (3,2) 

Unfortunately, no simple combinatorial proof of the hook formula exists. A number of outlines 
of existing proofs are given by Sagan ([389], p. 266). 

Young tableaux are related to the permutation group by a construction called the Schensted cor
respondence, or perhaps more appropriately, the Robinson-Schensted-Knuth correspondence. For 
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