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1 Introduction

Many real life systems can be described by complex networks, which usually
consist of a large number of nodes and edges. Among these networks, small-
world networks[1] are of particular interest since it captures both the order and
randomness of the real phenomena, such as that in the social networks, power
grids, neural networks, and so on.

In this project, I am trying to apply this model to classify networks generated
from human brain. Since small-world networks are essentially random graphs
whose adjacency matrices are random matrices, I first study the spectrum of
them. Next, I assume that a sampled brain network is perturbed version of
an averaged network: either that over people with Alzheimer’s disease, or over
healthy people. In order to diagnose a new patient, I calculate the spectral
correlation (i.e., correlation of eigenvalue distributions) between the network
of this patient and sampled networks in a database, where we know each data
point is generated from whether a sick or healthy person. These correlations
are then used to determine the status of the patient, which is effective when
ówe only have a relative small database compared against the dimension of each
network. Apart from this, I also briefly mention an extension of the small-world
network model to fit the observed brain networks.

2 Spectra of Small-World Networks

In general, a small-world network refers to a type of mathematical graph where
most nodes are not neighbors of one another, while most of them can be reached
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Regular Small-World Random

Figure 1: Diagram showing the relation among small-world network, regular
network, and random network[1].

from every other by a small number of hops [10]. Recently, a variety of phe-
nomena are revealed to be featured with small-world behavior, in mathematics,
physics and sociology. Thus, it is important to study the spectra of this type of
networks.

2.1 Network Construction

The small-world network is constructed by randomly rewiring a certain amount
of the edges of a regular ring network. First, we create a regular ring network as
follows. We draw the nodes indexed by 1, 2, · · · , N along a circle in ascending
order and for each node i, connect it to the k closest nodes to it: namely
nodes i− k/2, · · · , i− 1, i+ 1, · · · , i+ k/2, where k is an even number and the
arithmetic should be carried out modulo N . Next, starting from node 1 and
proceeding towards node N , perform the rewiring step. For node 1, consider
the first “forward connection,” i.e., the connection to node 2 since it is the first
connection with end-point index greater than 1. With probability p, reconnect
node 1 to another node chosen uniformly at random and without allowing self-
loop and multiple edges. Proceed toward the remaining forward connections of
node 1, and then perform this step for the remaining N − 1 nodes as well. The
rewiring for every edge is independent. Fig. 1 shows the relation among small-
world network, regular network, and random network. There are kN/2 edges in
a regular ring network; while in a random network (a.k.a., Erdős-Rényi graph),
since every pair of nodes has a probability p to be connected, the expected total
number of edges is pN . In a small-world network, there will be pkN/2 edges get
rewired on average with a rewiring probability p. When p varies from 0 to 1,
the small-world network switches from a regular network to a random network,
as we see from Fig. 1.
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Figure 2: The characteristic path length Lsw and clustering coefficient Csw

against p ranging from 10−4 to 1. The data are averages over 20 random re-
alizations of rewiring and are normalized by dividing their values at p = 0,
respectively.

As pointed out by Watts and Strogatz, a small-world network is featured with
short characteristic path length and large clustering coefficient. Specifically, the
characteristic path length Lsw is the average shortest path length between every
pair of nodes; the clustering coefficient Csw is the fraction of pairs of neighbors
of a node which are also neighbors to each other. In a small-world network, the
rewired edges act as shortcuts, making the average distance between every two
nodes much small. Meanwhile, since it is based upon a regular network, it also
has a large clustering coefficient. To illustrate these properties, I recover the
classic figure in the seminal paper [1] by plotting Lsw and Csw with respect to
different rewiring probability p. The number of nodes N and the degree of each
node k is fixed as 1000 and 10 respectively, while p is varying from 10−4 to 1.
Each data point in Fig. 2 is produced by averaging over 20 random realizations
of rewiring. We observe that in a certain range of p, roughly from 10−3 to 10−1,
the characteristic path length is small and the clustering coefficient is large,
meaning that the network has a small-world behavior.
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2.2 Spectral Properties

The eigenvalue spectrum of complex networks provides insightful information
about their structure properties [2]. Thus, in this section, I plot the eigenvalue
distribution of small-world network under certain cases. In particular, I choose
to study the eigenvalues of the normalized Laplacian matrix L of the network.
Suppose the adjacency matrix A = (aij) is defined as aij = 1/0 if node i and
node j are connected or not. And the degree matrix D is a diagonal matrix
with elements in the diagonal be the degree of each node. Then, we have

L = I −D−1/2AD−1/2, (1)

where I is identity matrix. Again, here I fix N = 1000, k = 10 and choose p =
0, 0.01, 0.3, 1 respectively. The results are shown in Fig. 3, where the horizontal
axis is eigenvalue λ and the vertical axis is the probability density of it.
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(a) p = 0 (b) p = 0.01
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(c) p = 0.3 (d) p = 1

Figure 3: Eigenvalue distribution of small-world network with different level of
rewiring probabilities p. The number of nodes N = 1000 and the degree of each
node k = 10 are fixed for all four cases.

Fig. 3(a) corresponds to the spectral density of a regular ring network; while
Fig. 3(d) corresponds to that of a random network, having a semicircle shape.
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Figure 4: The inverse participation ratios of eigenvectors for small-world net-
works with different rewiring probability p. N = 1000, k = 10 are fixed for all
cases.

In Fig. 3(b), we see for p = 0.01, the spectral density of the small-world contains
sharp peaks, which are the “blurred” remnants of the singularities of the p = 0
case. This implies that the network is still near regular, nevertheless containing
a small portion of impurities. Fig. 3 shows that for p = 0.3, there is not any
blurred singularity and the spectrum begins to get close to that of a random
network.

Another spectral property that we can look into is the structure of eigenvectors.
For instance, in [3] the inverse participation ratio of the normalized eigenvector

vi =
�
v
(1)
i , v

(2)
i , · · · , v(N)

i

�
associated with the i-th eigenvalue1 is defined as

Ii =
NX
j=1

�
v
(j)
i

�4
. (2)

For an eigenvector whose components are identical, i.e. v
(j)
i = 1/

√
N for every

1We arrange the eigenvalues in an ascending order.
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j, then Ii = 1/N . For an eigenvector with one single nonzero component, the
inverse participation ratio is 1. From Fig. 4, we observe that the eigenvectors of
the regular graph (p = 0) and the random graph (p = 1) are sparse uncorrelated,
although the latter has comparably larger inverse participation ratios. On the
contrary, eigenvectors belonging to the small-world network with p = 0.01 and
p = 0.3 are more localized.

3 Perturbation of Small-World Network

As mentioned before, the correlations among a lot of real-life systems can be
described by a small-world network. Human brain network is a particular exam-
ple as discovered in the literature [4] [5] [6]. In this section, I will first illustrate
the small-world behavior in this real network. Then, with the assumption that
the brain network of a patient is a perturbed version of an averaged network,
I determine the status of the patient by comparing the spectral correlation be-
tween the observed network and that of people having Alzheimer’s disease with
the correlation between this network and that of healthy people.

3.1 Brain Network Reconstruction

Alzheimer’s disease (AD), as the most common form of dementia, effects over
five million Americans and many people around the world. It is a fatal neu-
rodegenerative disorder characterized by progressive impairment of memory and
other cognitive functions. Recent advances in neuroimaging techniques, such as
Magnatic Resonance Imaging (MRI), Positron Emission Tomography (PET),
and Functional MRI (fMRI), offer great potentials for effective discrimination
of AD from mild cognitive impairment (MCI), normal aging (NA). It is reported
that the disease is closely related to the alternation in the functional brain net-
work, i.e., the functional connectivity among different brain regions [4] [7].

In [7], the authors studied sparse inverse covariance estimation (SICE), a.k.a.
exploratory Gaussian graphical models, for brain connectivity modeling. Specif-
ically, they applied SICE on PET images averaged over 49 AD, 116 MCI, and 67
NC subjects, respectively. By assuming that the voxel values {X1, X2, · · · , XM}
corresponding to different brain regions follow a multivariant Gaussian distribu-
tion with mean µ and covariance matrix Σ and letting Θ = Σ−1 be the inverse
covariance matrix, they formulate the SICE into an optimization problem as
follows

Θ̂ = argmaxΘ>0 log(det(Θ))− tr(SΘ)− γ∥vec(Θ)∥1, (3)

where S is the sample covariance matrix; det(·), tr(·), and vec(·) denote the
determinate, trace, and sum of the absolute values of all elements of a ma-

trix, respectively. The first two terms
�
log(det(Θ)) − tr(SΘ)

�
in (3) is the
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log-likelihood, while the remaining term ∥vec(Θ)∥ is the sparsity constraint to
the inverse covariance matrix. The tradeoff between them is governed by the
regularization factor γ.

 

     AD                                  MCI                                      NC 

(a) SICE-based brain connectivity networks (total number of edges equal to 50)

 

     AD                                  MCI                                      NC 

(b) SICE-based brain connectivity networks (total number of edges equal to 120)

Figure 5: Reconstructed brain networks with two different number of edges.
The regularization factors for each category of images are adaptively chosen in
order to make their amounts of edges identical [7].

Fig. 5 presents the reconstruction results in [7]. Every lattice in the figure
illustrates the correlation between two anatomical volumes of interest (AVOI).
If the correlation is nonzero, the lattice is marked as dark; otherwise, it is white.
The number of edges in each category are made to be even, by adaptively
choosing the regularization factor γ. Fig. 5(a) and Fig. 5(b) corresponds to
the case when the total number of edges is equal to 50 and 120, respectively.
In each subplot, four red cubes are used to highlight the brain regions in each
of the four lobes. From top-left to bottom-right, the red cubes highlight the
frontal, parietal, occipital, and temporal lobes, respectively. There are indeed
difference between AD, MCI, and NC in the connectivity networks. In terms of
within-lobe connectivity, for instance, the temporal lobe of AD has significantly
less connectivity than NC; while the frontal lobe of AD has significantly more
connectivity than NC. In terms of between-lobe connectivity, generally, human
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brains tend to have less between-lobe connectivity than within-lobe connectivity,
which is a reflection of the small-world behavior. The connectivity between the
parietal and occipital lobes of AD is significantly more than NC. Also, AD may
have less temporal-occipital connectivity, less frontal-parietal connectivity, but
more parietal-temporal connectivity than NC.

3.2 Small-World Feature of Brain Network

The reconstructed brain networks possess the two key features of a small-world
network, namely a short characteristic path length and large clustering coef-
ficient. The quantities Lsw and Csw associated with networks in Fig. 5 are
Lsw = 1.9365, Csw = 0.2270 for AD; and Lsw = 2.6019, Csw = 0.3444 for NC.
We may fit the human brain networks with a unified small-world network model.
If so, we can classify those networks by their corresponding parameter values in
the model. However, notice that the degrees of nodes in brain networks are not
always equal and the distribution of the connections of each node is different in
terms of the randomness level, we propose the following extended version of the
small-world network for fitting human brain networks:

Extension of Small-World Network : First, for each node j in the network we
assign a degree kj to it. The value can be obtained from an estimation according
to previous experiment results. In addition, we only require that these kj nodes
are around j, but not necessarily be the closest ones. A shift si for the center
of the neighborhood range with respect to node j can be adjusted. Next, we
add a rewiring probability pj to the forward edges of node j. This probability is
usually different for a different node. In the rewiring step, as that in the classic
small-world network, every edge is rewired to an arbitrary node according to
the rewiring probability. It turns out that the extended small-world network
can also be characterized by a set of parameters (N, k, s, p), with a difference
that k = (k1, k2, · · · , kN ), p = (p1, p2, · · · , pN ) are vectors and an additional
parameter s = (s1, s2, · · · , cN ).

3.3 Network Classify by Spectral Correlations

We exploit the network classification problem by calculating the spectral cor-
relations in this section. Particularly, I assume that the brain network of a
person with Alzheimer’s disease is a perturbed version of the averaged network
obtained in SICE, and the same holds for a healthy person. We choose the
networks of AD and NC with 50 edges in Fig. 5 as the bases. Then, we gen-
erate 50 perturbed versions of AD and NC by randomly adding or deleting an
edge in the associated bases. Suppose the adjacency matrix of a base network
is A = (aij), we determine every entry in the adjacency matrix of a perturbed
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network by

eaij =
¨
1− aij , with prob. pt;

aij , with prob. 1− pt
(4)

where pt is the probability of perturbation. After that, we compute the cor-
relation of eigenvalue distributions between the network of a incoming patient
and one of that in the database. The patient may belong to the group with
Alzheimer’s disease or healthy people. Denote the i-th eigenvalue of this new
network and that of a network in the database by ui and vi, respectively, the
spectral correlation is defined as

ρ(u, v)
def
=

PN
i=1 uiviPN

i=1 u
2
i

PN
i=1 v

2
i

. (5)

To determine the status of the patient, I compare the average spectral correla-
tions between the new network and the networks of people in two categories and
declare that the person belongs to the group with a high average correlation. In
this hypothesis testing framework, we can study the probability of false alarm
PF and that of missing PM . Fig. 6 shows the results when pt = 10−3. In this
case, PF and PM both turns out to be less than 1%. However, I found that if
increase the perturbation by a little bit, then those two probabilities will grow
quickly. The reason is that the assumed perturbation model is based on every
possible edge, the amount of which is very quite large. Thus, a small pt may
make the system unstable.

I also evaluate the hypothesis testing model on the standard small-world net-
works, as demonstrated in Fig. 7. Notice that pt = 0 corresponds to the base
networks without any perturbation. We can see as pt increases, the blue and red
curves get mixed together gradually. Even though, under all three perturbed
cases, we have negligible error probabilities PF and PM (less than 1%).

4 Conclusion

In this project, I studied the spectral properties of small-world networks and
proposed a network classification method by comparing spectral correlations.
We model the observation of real networks as perturbed versions of a base
network. Experiment results partially confirmed the feasibility of the proposed
strategy, although more real data are required to be collected and analyzed in
the future.
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Figure 6: The perturbed eigenvalue distributions for AD (blue lines) and NC
(red lines). The perturbation probability pt for each edge is 10−3.
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(a) pt = 0 (b) pt = 0.001
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(c) pt = 0.01 (d) pt = 0.1

Figure 7: The perturbed eigenvalue distributions of small-world networks with
different level of perturbation probabilities pt. For the base networks, the num-
ber of nodes N = 200 and the degree of each node k = 10 are fixed, while
the rewiring probabilities corresponding to blue and red lines are 0.01 and 0.1,
respectively.
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