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Number of Eigenstates of the Scattering Process
 
Under low temperature and low pressure, lights follow quantum mechanics and act as particles. 
When light or electronic wave omits, the particles will experience scattering processes. And that 
determines the electronic,thermal conductivity and many other transport properties. Therefore, 
it is crucial to figure out as much information of the particle as possible before and after this 
process. And since the initial states are controllable so the only problem is what happens after 
lights scatter.
 
Assume the wavefunction of the incoming particle can be represented by:

= , where  ψi are the states of particle and ai is the coefficient or amplitudes,
and the outgoing particle can be written as:

= .

Figure 1, Scattering process. ai is the amplitude of  incoming wave from the left, bj is the 
amplitude of the reflected wave from the left. Similarly, ai* and bj* have the same meaning 
except that they are from the right side.
 
 
The scattering matrix transfers the income into the outgoing wave function, as showed below:

=S .
Depend on different models, the scattering (S) matrix will generate both or one of the real and 
complex  eigenvalues. The complex numbers imply the phase transitions and are correlated 
with the collapse of wave functions, therefore troubling the simulation. Consequently, complex 
numbers are not welcomed. Real eigenvalues, instead, reveal a clear and neat picture of the states 



for poping.So far, transport properties, suvh as conductivities, can then be obtained.
.
Here the problem can be converted to how many real eigenvalues are there for a random matrix. 
Studied by Dr. A. Edelman in 1993, the expectation value of the number of real eigenvalues (

) decays at the same rate as that of  where k is the size of matrix. And the following equation 
exists:

=
 

After expanding, its asymptotic series is = .

Particularly, for even size of matrix, ;

for odd size of matrix, .
Monte Carlo experiments have been conducted to verify the theory first. Then the standard 
deviation has also been run. The result is, as the size of the matrix becomes very large, the 
standard deviation of the number of real eigenvalues approaches to zero.
 
1000 matrices of size 1*1, 50*50, 100*100 and 200*200 were run.

 
 

Figure ， of random matrix of size k*k: 1*1(Left top),50*50(right top),100*100(left bottom), 
200*200(right bottom). n is the number of real eigenvalues of each matrices.



 
For 1*1 matrices, it is obvious that the number of real eigenvalue has to be 1. It is also ready 
to see that n has a few choices, n-2, n-4, n-6... That is because for any complex eigenvalues 
appearing, there must be the complex number itself and its conjugate number simultaneously. 

Smooth out rest of the pictures, it is clear that all the lines are narrowing towards 0.8  

Figure 3, the blue curved lines represents for matrix of k=1. Other curves are for k= 50, 100 and 200, 
respectively. 
 
 

Take the mean values of , 

= .
For k=[1,n], Figure 4 is obtained. To see clearly the trend of the mean values, larger size of 
matrix from 100 to 200 was run. However, due to the larger amount of calculation time as k 
becomes larger, the experiment stopped at k=183. However, we could still see the mean has 
approached 0.80. 
 
 



 

Figure 4,  as k=[1,100].
 

Figure 5,   as k=[100, 183].
 
As implied by the previous figures, for large k, eventually all k by k matrices will have a special 

number of real eigenvalues, which is 0.8* . Imaging for  1000000000 matrices with size of 
1000000000*10000000000, the number of real eigenvalues should be 8*  for each. On the 
other hand, very few matrices will  have a different number from that. As a consequence, the 
standard deviation should goes to zero. Tested in the Monte Carlo experiment [see figure 6], it 
is clear to figure out. In this experiment, the number of trials dropped from 1000 to 100, since 
1000 circular calculations will take incredible amount of time to run, especially for larger size 
matrix of 2000 by 2000 and up. With the number of trials decrease, only small size matrices are 
affected. The standard deviation of k=10 shift in between 0.41 to 0.38, while for large k, the shift 
is too small to count. Also, to make up for the declining trials, another experiment with 500 trials 
were done for k up to 3200 [see figure 7].



  
.

 
 
Figure 6, standard deviation of the number of real eigenvalues for matrix size of 10*10, 50*50, 100*100, 
200*200, 400*400, 800*800, 1000*1000, 1200*1200, 1800*1800, 2000*2000, 3000*3000, 4000*4000, 
5000*5000, 8000*8000. - 100 trials.
 

Figure 7, STD of the number of real eigenvalues for matrix size of k= 1, 100,101, 200, 201, 400, 401, 
800,801,1200,1201,2000,2001,3200,3201. Two curves exist for even and odd k, respectively.-500 trials
 
Interesting but not surprised, for even and odd k, two curves appeared on their way to 0. The 
upper one is for even k while the lower one is for odd k. More experiments have been further run 
for unitary matrix and orthogonal matrix.  Those special properties are added onto the scattering 
matrix in the Dyson model. And the results are not surprising.
 
 
 



 
Unitary matrices are designed as:
U= MatrixExp[i*(M+transpose(M)/2)], where M is a random matrix of k by k.
0 real eigenvalues can be observed. As a unititary matrix, all the eigenvalues spread around the 
unit circle on the complex plane. So it is reasonable that 0 real eigenvalues can be obtained.
 

For the orthogonal matrix, it is designed as 
MatQ= QRDecompositon[M], where M is a random matrix. of k by k
For even k, the possible real eigenvalues are 1 and -1, which gives a total number of 2. 
For odd k, the real eigenvalues is either 1 or -1, which give a total number of 1.

With 10 trials, table 1 is quickly generated. And the general value of  can be written in:

, for k is even; , for k is odd.

10 .632

11 .3015

50 .2828

51 .14

100 .2

101 .0995

 Table 1, for k= 10, 11 , 50, 51, 100, 101, the value of  are showed on the right side of the table.- 
10trials



To improve the accuracy, more trials are tested and figure 9 is generated.

 
Figure 9, the average Vs. the size of the eigenvalues. Tested with 1000 trials. n in this figure is equivalent 
to k, the size of the matrix.
 
As showed in figure 9, table 1 can be applied to all sizes orthogonal matrices for all trials.
 
As a brief summary, states in the Dyson model will follow the unitary and the orthogonal 
patterns and therefore the scattering matrix generates a very few number of real eigenvalues 
with large k. In the other cases where no other restrictions will be applied to the S matrix, the 

number of states will be 0.8* . And since the standard deviation is 0 as k is large, the number 
of states for particles should have few fluctuation. Afterwards, the mean field can be introduced 
to calculate the other transport properties. And that will be the next step in the future research.
 
Last but not the least, as the initial requirements of this class, two tables for the probability of 
real eigenvalues as k=10 and k=11 are attached. Both calculations follow Dr. Edelman’s method. 
When k=10, the probability of having 10, 8, 2 and 0 real eigenvalues can be obtained within 4 
to 5 hours. However the rest two takes more than 10 hours. But it is still not hard to derive one 
of them by integrating yi and xi. Eventually the leftover can be obtained by the fact that the total 
probability should be 1. In addition, experimental data are also collected.
 
 



 k P10(k)  Monte Carlo 
results

10 1.68*10^-7

8 3.1*10^-4

6 0.0444

4

1- - - -

-

0.421

2 0.49

0 0.043

Table 2, Pk(n), the probability of n real eigenvalues for k by k matrices. 



   
Figure 10, Monte Carlo experiment with 10000 trials.
 

k P11(k)   

11 5.27*10^-9

9 3.87*10^-5

7 8.9*10^-3

5 0.2102

3 1- all other numbers 0.5818

1 0.1997

Table 3, Pk(n), the probability of n real eigenvalues for k by k matrices. 
 



Figure 11, Monte Carlo experiment with 10000 trials.
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