Estimate the number of states in a scattering process

Wanqin Xie
5/16/2012

Scattering Matrix

$$
\begin{aligned}
& \Psi_{\text {in }}=\sum\left[a_{i}^{*} \Psi_{i}\right] \\
& \Psi_{\text {out }}=\sum\left[b_{b}^{*} \Psi \Psi_{j}\right] \\
& \Psi_{\text {out }}=S^{*} \Psi_{\text {in }}
\end{aligned}
$$

Random scattering, how could we get the number of states?

How many real eigenvalues are in a n by n matric?

Real eigenvalue indicates one existing state at equilibrium.

So now, we can convert the previous questions into:

How many real eigenvalues are there?

Math part

$-\mathrm{En}=\mathrm{sqrt}(\mathrm{Pi})^{*} \Gamma((\mathrm{n}+1) / 2) / \Gamma(\mathrm{n} / 2)$
-Its asympototic series:
En=sqrt(Pi*n/2)*(1-1/4n+1/32n^2...)
-From here, we know that, when n is large, the expectation value of real eigenvalues decays at a similar rate as sqrt(n).
-Also, for even n : En=sqrt(2) $\Sigma((4 \mathrm{k}-1)!!/(4 \mathrm{k})!!), \mathrm{k}=[0, \mathrm{n} / 2-1]$
for odd n : En=1+sqrt(2) $\Sigma((4 k-3)!!/(4 k-2)!!)$

$$
\mathrm{k}=[1,(\mathrm{n}-1) / 2]
$$

Distribution of the number of real Eigenvalues, k

-Monte Carlo
-1000 trials
$-k$: array of the number of real eigenvalues for 1000 n by n matrices.

k/sqrt[n], 1000 trials

Smoothout

Mean,1000 trials

Mean[k/sqrt[n]]=Mean[k]/sqrt[n], $n=[1,100]$

$n=[100,200], 1000$ trials

About 80 points are plot.

Standard Deviation

STD[k/sqrt[n]] approaches to 0 as n goes to infinity.

500 trials

Unitary Matrix

Is there any characteristics for random unitary Matrix?

U is designed as:
U= MatrixExp[i*(R+Transpose(R))],
where R is a random matrix.

Eigenvalues

Full zeros.

Orthogonal Matrix

For a unitary matrix with all real elements, orthogonal Matrix is designed as:
O=MatQ= QRDecompositon[M].
Number of real eigenvalues is 2 , which are 1 and -1 . [n is even.]
Number of real eigenvalues is 1 , which is either 1 or -1 . [n is odd.]

10 trials

10	.632
11	.3015
50	.2828
51	.14
100	.2
101	.0995

1000 trials

And STD are all zeros.

RMT for scattering matrix

In the circular ensemble,
for $\beta=1$, S is COE
for $\beta=2$, S is CUE
for $\beta=4$, we do not care that much.

For other cases, where S is completely a random matrix, we could apply the previous results that as n becomes large enough, En is about 0.8 with a standard deviation of 0 . Hence, we can estimate the possible number states available before and after the scattering.

Extra slide 1

Extended table: $\mathrm{n}=10$

k	$P_{10(k)}$	
10	$1 /\left(4193304^{*} \operatorname{sqrt}(2)\right)$	$1.68^{*} 10^{\wedge}-7$
8	$(236539-320$ sqrt(2))/536870912sqrt (2)	$3.1^{* 10^{\wedge}-4}$
6	$/$	$0.0444^{* * *}$
4	$/$	$0.421^{* * *}$
2	$(1216831949-594932556 s q r t(2))$ $/ 536870912^{*} \operatorname{sqrt}(2)$	0.49
0	$-1146637039+834100651$ sqrt(2) $/ 526870912$ sqrt(2)	0.043

Extra slide 2

Extended table: $\mathrm{n}=11$

k	$\mathrm{P}_{11}(\mathrm{k})$	
11	$1 /\left(134217728^{*} \operatorname{sqrt(2))}\right.$	$5.27^{*} 10^{\wedge}-9$
9	$(-320+333123 \mathrm{sqrt}(2))$ /8589934592sqrt(2)	$3.87^{* 1} 10^{\wedge}-5$
7	$/$	$8.9^{* 10^{\wedge}-3^{* * *}}$
5	$/$	$0.2102^{* * *}$
3	$/$	$0.5818^{* * *}$
1	$-12606311702+106298452511 \mathrm{sqrt}$ $(2) / 8589934592$ sqrt(2)	0.1997

Reference

Edelman A, Kostlan E,How many Eigenvalues of a Random Matrix are Real, July 3,1993
C. W. J. Beenakker, Random-matrix theory of thermal conduction in superconducting quantum dotsRandom-matrix theory of thermal conduction in superconducting quantum dots. Apr 2010

Michael V. Moskalets,Scattering matrix approach to non-stationary quantum transport

