Estimate the number of states in a scattering process

Wanqin Xie 5/16/2012

Scattering Matrix

Random scattering, how could we get the number of states?

How many real eigenvalues are in a n by n matric?

Real eigenvalue indicates one existing state at equilibrium.

So now, we can convert the previous questions into:

How many real eigenvalues are there?

Math part

 $-En=sqrt(Pi)^{*}\Gamma((n+1)/2)/\Gamma(n/2)$

```
-Its asympototic series:
En=sqrt(Pi*n/2)*(1-1/4n+1/32n^2...)
```

-From here, we know that, when n is large, the expectation value of real eigenvalues decays at a similar rate as sqrt(n). -Also, for even n: En=sqrt(2) $\Sigma((4k-1)!!/(4k)!!)$, k=[0,n/2-1] for odd n: En=1+sqrt(2) $\Sigma((4k-3)!!/(4k-2)!!)$ k=[1,(n-1)/2]

Edelman A, Kostlan E, July 3,1993

Distribution of the number of real Eigenvalues, k

- -Monte Carlo
- -1000 trials

-k: array of the number of real eigenvalues for 1000 n by n matrices.

k/sqrt[n], 1000 trials

Smoothout

Mean,1000 trials

Mean[k/sqrt[n]]=Mean[k]/sqrt[n], n = [1,100]

n=[100,200], 1000 trials

About 80 points are plot.

Standard Deviation

STD[k/sqrt[n]] approaches to 0 as n goes to infinity.

100 trials with n by n matrix

500 trials

Unitary Matrix

Is there any characteristics for random unitary Matrix?

U is designed as: U= MatrixExp[i*(R+Transpose(R))], where R is a random matrix.

Eigenvalues

1.0

Full zeros.

Orthogonal Matrix

For a unitary matrix with all real elements, orthogonal Matrix is designed as: O=MatQ= QRDecompositon[M].

Number of real eigenvalues is 2, which are 1 and -1. [n is even.] Number of real eigenvalues is 1, which is either 1 or -1. [n is odd.]

10 trials

10	.632
11	.3015
50	.2828
51	.14
100	.2
101	.0995

1000 trials

п

And STD are all zeros.

RMT for scattering matrix

In the circular ensemble,

for β =1, S is COE for β =2, S is CUE for β =4, we do not care that much.

For other cases, where S is completely a random matrix, we could apply the previous results that as n becomes large enough, En is about 0.8 with a standard deviation of 0. Hence, we can estimate the possible number states available before and after the scattering.

Extra slide 1

Extended table: n=10

k	P10(k)	
10	1/(4193304*sqrt(2))	1.68*10^-7
8	(236539-320sqrt(2))/536870912sqrt (2)	3.1*10^-4
6	1	0.0444***
4	1	0.421***
2	(1216831949-594932556sqrt(2)) /536870912*sqrt(2)	0.49
0	-1146637039+834100651sqrt(2) /526870912sqrt(2)	0.043

Extra slide 2

Extended table: n=11

	k	P11(k)	
:	11	1/(134217728*sqrt(2))	5.27*10^-9
	9	(-320+333123sqrt(2)) /8589934592sqrt(2)	3.87*10^-5
	7	/	8.9*10^-3***
	5	/	0.2102***
	3	/	0.5818***
8	1	-12606311702+106298452511sqrt (2)/8589934592sqrt(2)	0.1997

Edelman A, Kostlan E, *How many Eigenvalues of a Random Matrix are Real*, July 3,1993

<u>C. W. J. Beenakker, Random-matrix theory of thermal conduction in</u> <u>superconducting quantum dotsRandom-matrix theory of thermal conduction in</u> <u>superconducting quantum dots. Apr 2010</u>

<u>Michael V. Moskalets, Scattering matrix approach to non-stationary</u> <u>quantum transport</u>