KP Hierarchy and the Tracy-Widom Law

Yi Sun

MIT
May 7, 2012

Introduction

Theorem (Tracy-Widom Law)

As $n \rightarrow \infty$, the probability that all eigenvalues of an $n \times n$ GUE matrix are at most u is given by

$$
\operatorname{det}\left(I-K_{\text {Airy }}^{[u, \infty)}\right)=\exp \left(-\int_{u}^{\infty}(\alpha-u) g^{2}(\alpha) d \alpha\right)
$$

where g satisfies the Painlevé II equation

$$
g^{\prime \prime}=x g+2 g^{3}
$$

and has asymptotics $g(x) \rightarrow \frac{\exp \left(-\frac{2}{3} x^{3 / 2}\right)}{2 \sqrt{\pi} x^{1 / 4}}$ as $x \rightarrow \infty$.

Gap Probabilities for GUE

- Let $\left\{\phi_{n}\right\}_{n \geq 0}$ be orthonormal functions given by $\phi_{n}(x)=\psi_{n}(x) e^{-\frac{1}{2} x^{2}}$, where $\left\{\psi_{n}\right\}_{n \geq 0}$ are the Hermite polynomials.
- Eigenvalues of a $N \times N$ GUE matrix have correlation functions

$$
\rho\left(x_{1}, \ldots, x_{k}\right)=\operatorname{det}\left(K_{N}\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{k}
$$

for the kernel

$$
K_{N}(x, y)=\sum_{i=0}^{N-1} \phi_{i}(x) \phi_{i}(y)
$$

- Gap probabilities are

$$
\mathbb{P}\left(\text { no } x_{i} \text { in } E\right)=\operatorname{det}\left(I-K_{N}^{E}\right)
$$

where $K_{N}^{E}(x, y)=K_{N}(x, y) I_{E}$.

Airy Kernel

Theorem

Taking convergence in the sup-norm, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2} n^{1 / 6}} K_{n}\left(\sqrt{2 n}+\frac{x}{\sqrt{2} n^{1 / 6}}, \sqrt{2 n}+\frac{y}{\sqrt{2} n^{1 / 6}}\right)=K_{A i r y}(x, y)
$$

where the Airy kernel is given by

$$
K_{\text {Airy }}(x, y)=\int_{0}^{\infty} \operatorname{Ai}(x+t) \operatorname{Ai}(y+t) d t=\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\mathrm{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}
$$

and the Airy function is given by

$$
\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{u^{3}}{3}+x u\right) d u
$$

and satisfies the differential equation $\mathrm{Ai}^{\prime \prime}(x)-x \mathrm{Ai}(x)=0$.

Background on KP

- Consider a pseudo-differential operator

$$
L(t)=\partial_{x}+u_{1}(x, t) \partial_{x}^{-1}+u_{2}(x, t) \partial_{x}^{-2}+\cdots
$$

Want two conditions:

- Continuous spectrum with wave function $\Psi(x, t, z)$:

$$
L(t) \cdot \Psi(x, t, z)=z \Psi(x, t, z)
$$

- Evolution of the wave function $\Psi(x, t, z)$:

$$
\partial_{i} \Psi(x, t, z)=L_{+}^{i} \Psi(x, t, z)
$$

where L_{+}^{i} is the purely differential part of L^{i} and $\partial_{i}=\frac{\partial}{\partial t_{i}}$.
KP hierarchy $=$ conditions for this to be consistent

Background on KP (II)

- Sato Grassmannian $\Omega=$ Subspaces $W \subset \mathbb{C}\left[\left[z, z^{-1}\right]\right]$ with $\pi: W \xrightarrow{\sim} \mathbb{C}[[z]]$.
- Points in Ω correspond to τ functions:

$$
\tau(t)=\operatorname{det}\left(\pi: e^{-\sum_{j \geq 1} t_{j} z^{j}} \cdot W \rightarrow \mathbb{C}[[z]]\right)
$$

Theorem

Solutions $\left\{u_{i}\right\}$ to $K P$ with wave function $\Psi(t, z)$ correspond to τ functions:

$$
\Psi(t, z)=\frac{\tau\left(t-\left[z^{-1}\right]\right)}{\tau(t)} e^{\sum_{i \geq 1} t_{i} z^{i}}
$$

where $\left[z^{-1}\right]=\left(z^{-1}, \frac{z^{-2}}{2}, \frac{z^{-3}}{3}, \ldots\right)$.

- Can characterize all $\tau(t)$ by a bilinear relation.

KP and the Airy Kernel

Example of KP:

- Take $L(t)$ so that L^{2} is purely differential and $L(0)^{2}=\partial_{x}^{2}-x$.
- Match wave function and Airy function:

$$
\Psi(x, 0, z)=2 \sqrt{\pi z} \mathrm{Ai}\left(x+z^{2}\right)=e^{x z+\frac{2}{3} z^{3}}(1+o(1))
$$

- $L(0)^{2} \cdot \Psi(x, 0, z)=\left(x+z^{2}\right) \Psi(x, 0, z)-x \Psi(x, 0, z)=z^{2} \Psi(x, 0, z)$

Extend $\Psi(x, 0, z)$ to all times:

- Consider asymptotics:

$$
\Psi(x, 0, z)=e^{x z+\frac{2}{3} z^{3}}(1+o(1)),
$$

- Define subspace in Ω :

$$
W=\operatorname{span}_{i \geq 0}\left\{\partial_{1}^{i} \Psi(x, 0, z)\right\}
$$

KP and the Airy kernel (II)

Recall $W=\operatorname{span}_{i \geq 0}\left\{\partial_{1}^{i} \Psi(x, 0, z)\right\} \in \Omega$:

- Take τ function associated to W (Kontsevich integral):

$$
\tau_{\text {Airy }}(t)=\lim _{N \rightarrow \infty} \frac{\int \exp \left(-\operatorname{Tr}\left(\frac{1}{3} X^{3}+X^{2} Z\right)\right) d X}{\int \exp \left(-\operatorname{Tr}\left(X^{2} Z\right)\right) d X}
$$

where X is drawn from $N \times N$ GUE and $Z=\operatorname{diag}\left(z_{n}\right)$ with

$$
t_{n}=-\frac{1}{n} \sum_{i} z_{i}^{-n}+\frac{2}{3} \delta_{n, 3}
$$

- By Theorem, get $\Psi(x, t, z)$ corresponding to $\tau_{\text {Airy }}(t)$
- Check (abstractly) that $\Psi(x, 0, z)=2 \sqrt{\pi z} \operatorname{Ai}\left(x+z^{2}\right)$.

Vertex operator and Airy kernel

- KP vertex operator:

$$
X(t, y, z):=\frac{1}{z-y} \exp \left(\sum_{i \geq 1}\left(z^{i}-y^{i}\right) t_{i}\right) \exp \left(\sum_{i \geq 1} \frac{y^{-i}-z^{-i}}{i} \partial_{i}\right)
$$

- For kernels of the form

$$
K^{E}(t, y, z)=\int_{E} \Psi(x, t, y) \Psi^{*}(x, t,-z) d x
$$

can write

$$
K^{E}(t, y, z)=\frac{X(t, y, z) \tau(t)}{\tau(t)} .
$$

Fredholm determinants

Theorem

The Fredholm determinant of K^{E} is given by:

$$
\operatorname{det}\left(I-\lambda K^{E}\right)=\frac{1}{\tau(t)} \exp \left(-\lambda \int_{E} X(t, z,-z) d z\right) \tau(t)
$$

Proof idea: Consider discrete analogue and take limit.

- " $X(t, y, z)^{2}=0$ ", so $\exp (a X(t, y, z))=1+a X(t, y, z)$, giving

$$
\frac{1}{\tau(t)} \exp \left(\sum_{i} a_{i} X\left(t, z_{i},-z_{i}\right)\right) \tau(t)=\frac{1}{\tau(t)} \prod_{i}\left(1+a_{i} X\left(t, z_{i},-z_{i}\right)\right) \tau(t)
$$

- Expand and use identity on product of vertex operators to get

$$
\operatorname{det}\left(I+a_{j} \int \Psi\left(x, t, z_{i}\right) \Psi^{*}\left(x, t,-z_{i}\right) d x\right)
$$

Virasoro constraints

Consider the expansion:

$$
X(t, y, z)=\frac{1}{z-y} \sum_{k=0}^{\infty} \frac{(z-y)^{k}}{k!} \sum_{I=-\infty}^{\infty} y^{-I-k} W_{l}^{(k)}
$$

- $W_{l}^{(1)}=$ realization of Heisenberg algebra
- $W_{l}^{(2)}=$ realization of Virasoro algebra

Commutation relations among $X(t, y, z)$ and $X\left(t, y^{\prime}, z^{\prime}\right)$ give:

$$
\left[\frac{1}{2} W_{l}^{(2)}, X(t, z,-z)\right]=\partial_{z}\left(z^{I+1} X(t, z,-z)\right)
$$

Integration by parts:

$$
\left[\frac{1}{2} W_{l}^{(2)}, \int_{a}^{b} X(t, z,-z) d z\right]=b^{I+1} X(t, b,-b)-a^{I+1} X(t, a,-a)
$$

Virasoro constraints (II)

Recall:

$$
\left[\frac{1}{2} W_{l}^{(2)}, \int_{a}^{b} X(t, z,-z) d z\right]=b^{\prime+1} X(t, b,-b)-a^{l+1} X(t, a,-a)
$$

and

$$
\operatorname{det}\left(I-\lambda K^{[a, b]}\right)=\frac{1}{\tau(t)} \exp \left(-\lambda \int_{a}^{b} X(t, z,-z) d z\right) \tau(t) .
$$

If had $W_{l}^{(2)} \cdot \tau(t)=c_{I} \tau(t)$ (obtained from bilinear relations on τ), then combining gives

$$
\left(b^{\prime+1} \partial_{b}+a^{l+1} \partial_{a}-\frac{1}{2} W_{l}^{(2)}+\frac{1}{2} c_{l}\right) \exp \left(-\lambda \int_{E} X(t, z,-z) d z\right) \tau(t)=0
$$

so we see that

$$
\left(b^{I+1} \partial_{b}+a^{I+1} \partial_{a}-\frac{1}{2} W_{l}^{(2)}+\frac{1}{2} c_{l}\right) \tau(t) \operatorname{ker}\left(I-\lambda K^{[a, b]}\right)=0
$$

Virasoro constraints (III)

- Recall $\left(b^{I+1} \partial_{b}+a^{I+1} \partial_{a}-\frac{1}{2} W_{l}^{(2)}+\frac{1}{2} c_{l}\right) \tau(t) \operatorname{ker}\left(I-\lambda K^{[a, b]}\right)=0$.
- General KP theory:

$$
\widetilde{\tau}(t):=\tau(t) \operatorname{ker}\left(I-\lambda K^{[a, b]}\right)=\exp \left(-\lambda \int_{E} X(t, z,-z) d z\right) \tau(t)
$$

is a τ function.

- Use bilinear relations on $\widetilde{\tau}(t)$ in terms of t_{i} to get relations on $\widetilde{\tau}(t)$ in terms of ∂_{a} and ∂_{b} !
- Obtain constraints of form

$$
P\left(a, b, \partial_{a}, \partial_{b}\right) \log \left(\tau(t) \operatorname{ker}\left(I-\lambda K^{[a, b]}\right)\right)=0
$$

- Can remove $\tau(t)$ because differential is independent of t.

References

围 Mark Adler, T. Shiota, and P. van Moerbeke, Random matrices, vertex operators, and the Virasoro algebra, Physics Letters A 208 (1995), 67-78.

R , Random matrices, Virasoro algebras, and noncommutative KP, Duke Mathematical Journal 94 (1998), no. 2, 379-431.
(1. Mark Adler and P. van Moerbeke, Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials, Duke Mathematical Journal 80 (1995), no. 3, 863-911.
Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1-23. 1171758 (93e:32027)

