Eigenvalues of Random Graphs

Yufei Zhao
Massachusetts Institute of Technology

May 2012

Random graphs

Question
What is the limiting spectral distribution of a random graph?

Random graphs

Question

What is the limiting spectral distribution of a random graph?

- Erdős-Rényi random graphs $G(n, p)$: edges added independently with probability p.
- Random d-regular graph $G_{n, d}$.

Key difference: edges of $G_{n, d}$ are not independent.

Eigenvalues of random graphs

Random d-regular graph $G_{n, d}$

- Largest eigenvalue is d
- All other eigenvalues are $O(\sqrt{d})$.
$G(n, p)$
- Largest eigenvalue $\approx n p$
- All other eigenvalues are $O(\sqrt{n p})$.

Eigenvalues of random graphs

Random d-regular graph $G_{n, d}$

- Largest eigenvalue is d
- All other eigenvalues are $O(\sqrt{d})$.
$G(n, p)$
- Largest eigenvalue $\approx n p$
- All other eigenvalues are $O(\sqrt{n p})$.

Note: In spectra plots, the matrices de-meaned and normalized.
Fact: If J is rank 1 , then the eigenvalues of A and $A-J$ interlace. So shape of limiting distribution is unchanged.
$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=1.0$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=1.5$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=3$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=10$

Random 3-regular graph

Random 6-regular graph

$G(n, p)$ when $p=\omega(1 / n)$

Theorem
Let $p=\omega\left(\frac{1}{n}\right), p \leq \frac{1}{2}$. The normalized spectral distribution of $G(n, p)$ approaches the semicircle law.

$G(n, p)$ when $p=\omega(1 / n)$

Theorem
Let $p=\omega\left(\frac{1}{n}\right), p \leq \frac{1}{2}$. The normalized spectral distribution of $G(n, p)$ approaches the semicircle law.

- Proof is basically same as Wigner's theorem.
- Method of moments.
- Counting walks and trees. Catalan numbers.
$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=0.2$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=0.3$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=0.5$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=0.7$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=1.0$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=1.2$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=1.5$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=2$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=3$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=5$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=7$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=10$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=20$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=50$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=70$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=100$

$G\left(n, \frac{\alpha}{n}\right)$ when $\alpha=200$

$G\left(n, \frac{\alpha}{n}\right)$

- Discrete component - spikes
- Continuous component
- To explain this phenomenon, we need to understand the structure of $G(n, p)$.

Structure of a random graph

P. Erdős and A. Rényi. On the evolution of random graphs. 1960.

Structure of $G(n, p)$, almost surely for n large:

- $p=\frac{\alpha}{n}$ with $\alpha<1$.

All components have small size $O(\log n)$, mostly trees.

- $p=\frac{\alpha}{n}$ with $\alpha=1$.

Largest component has size on the order of $n^{2 / 3}$.

- $p=\frac{\alpha}{n}$ with $\alpha>1$,

One giant component of linear size; and all other components have small size $O(\log n)$, mostly trees.

Spectra of $G\left(n, \frac{\alpha}{n}\right)$

- Properties of spectra: very few rigorous proofs; lots of intuition and "physicists' proofs".
- Continuous spectrum + discrete spectrum
- Suspected that the giant component contributes to the continuous spectrum
- and isolated and hanging trees contribute to the discrete spectrum.

Trees give the spikes

T	$A(T)$	Eigenvalues
-	(0)	0
-•	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	-1, 1
\cdots	$\left(\begin{array}{llll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$	$\begin{array}{cc} -\sqrt{2}, & 0, \\ (-1.41) & \\ (1.41) \end{array}$
\cdots	$\left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$	$\begin{array}{cccc} \frac{-1-\sqrt{5}}{2}, & \frac{1-\sqrt{5}}{2}, & \frac{-1+\sqrt{5}}{2}, & \frac{1+\sqrt{5}}{2} \\ (-1.62) & (-0.62) & (0.62) & (1.62) \end{array}$
	$\left(\begin{array}{llll} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$	$\begin{array}{cccc} -\sqrt{3}, & 0, & 0, & \sqrt{3} \\ (-1.73) & & & (1.73) \end{array}$

Random 2-regular graph

Random 3-regular graph

Random 4-regular graph

Random 5-regular graph

Random 6-regular graph

Random 7-regular graph

Random 8-regular graph

Random 9-regular graph

Random 10-regular graph

Random 15-regular graph

Random 20-regular graph

Random d-regular graphs

Theorem (McKay 1981)
Let $d \geq 2$ be a fixed integer. As $n \rightarrow \infty$, the spectral distribution of a random d-regular graph $G_{n, d}$ on n vertices approaches

$$
f_{d}(x)= \begin{cases}\frac{d \sqrt{4(d-1)-x^{2}}}{2 \pi\left(d^{2}-x^{2}\right)}, & \text { if }|x| \leq 2 \sqrt{d-1} \\ 0, & \text { otherwise }\end{cases}
$$

Random d-regular graphs

Theorem (McKay 1981)

Let $d \geq 2$ be a fixed integer. As $n \rightarrow \infty$, the spectral distribution of a random d-regular graph $G_{n, d}$ on n vertices approaches

$$
f_{d}(x)= \begin{cases}\frac{d \sqrt{4(d-1)-x^{2}}}{2 \pi\left(d^{2}-x^{2}\right)}, & \text { if }|x| \leq 2 \sqrt{d-1} ; \\ 0, & \text { otherwise. }\end{cases}
$$

Proof idea:

- Method of moments.
- Reduce to counting closed walks in $G_{n, d}$.

- Locally $G_{n, d}$ looks like a d-regular tree.

Random d-regular graphs with d growing

Theorem (Tran-Vu-Wang 2012)
Let $d \rightarrow \infty, d \leq \frac{n}{2}$. As $n \rightarrow \infty$, the spectral distribution of a random d-regular graph $G_{n, d}$ on n vertices converges to the semicircle distribution.

Random d-regular graphs with d growing

Theorem (Tran-Vu-Wang 2012)
Let $d \rightarrow \infty, d \leq \frac{n}{2}$. As $n \rightarrow \infty$, the spectral distribution of a random d-regular graph $G_{n, d}$ on n vertices converges to the semicircle distribution.

Proof idea:

- $G\left(n, \frac{d}{n}\right)$ is d-regular with some (small) probability
- But the probability that the spectral distribution of $G\left(n, \frac{d}{n}\right)$ deviates from the semicircle is even smaller.
- So with high probability the spectral distribution of $G_{n, d}$ is close to the semicircle.

Summary

Erdős-Rényi random graph $G(n, p)$

- $p=\frac{\alpha}{n}$: observed continuous + discrete spectrum
- $p=\omega\left(\frac{1}{n}\right)$: semicircle [Wigner 1955]

Random d-regular graph

- Fixed d: [McKay 1981]
- Growing d : semicircle [Tran-Vu-Wang 2012]

