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1 Introduction
Random Orthogonal Matrices is a group of unitary matrices with strong applications to
many fields such as statistics, encryption and signal processing. Due to the properties of
random orthogonal matrices, if we apply these operators to a vector on the unit sphere, we
should expect the results uniformly distributed again on the unit sphere, regardless of the
dimension of our space. Therefore, we call these matrices, M ’s, to be isotropical. However,
an unexpected numerical observation of these operators raised in the paper by Marzetta,
Hassibi and Hochwald in 2002 [1]. They applied these three dimensional random orthogonal
matrices M ’s to the "North Pole", x0 =(1 0 0)′, for twice, the distribution of outcomes no
longer obey to the uniform distribution. These new vectors have a higher probability to
sit arround the North Pole! In another word, the second power of the random orthogonal
matrices are not isotropical any more.

In fact, in this numerical experiment [1], we may further observed that for any higher
than one power of the Random Orthogonal Matrice, they are not isotropical. In the case of
even powers, the outcomes tend to be in the "north hemispere", while for the odd powers,
they are more likely to stay in both of the "polar region" instead of sitting closed to the
"equator". Such power behavior of the random orthogonal matrices is called as the "North
Pole problem".

In this paper, we first gave an introduction to the origin and background of the "North
Pole Problem". In the second section, we will do a numerical experiment for the three
dimensional case, and plot the comparison of the Mx0, M2x0 and the M3x0 on the unit
sphere by varying M ’s. Then by such a Monte Carlo simulation, we may approach to
the probabilities of M2x0 for sitting on the "north hemisphere", namely the probability
P[x′0M

2x0 > 0], in dimension three or even higher. In the third section, we will present
the detail development of the "North Pole" distribution, x′0Γx0 and x′0M

2x0, theoretically
relate then to some some known distributions. Then we can compare them with our previous
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numerical results in the previous part and try to provide answers to the "North Pole" problem
in this case. Finally, the results for the distribution of x′0M3x0 will also be shown without
proof in the last section.

2 Numerical Results
In this section, we will present the results from numerical simulation of Mx0, M2x0 and the
M3x0 on the three dimensional unit sphere and the probabilities P[x′0M

2x0 > 0] in different
dimensions through the Monte Carlo method.

First, three dimensional random orthogonal matrices are generated by the QR factor-
ization of normal random matrices, which means M is the unitary Q matrix from the QR
factorization. Then we apply these operatorsM to the "North Pole" x0 =(1 0 0)′ once, twice
and three times respectively, then we can get three plots for the distributions of Mx0, M2x0
and M3x0.

From the figure 1 we can see Mx0 points are uniformly distributed on the unit sphere.
The figure 2 suggests that M2x0 tend to be closer to the "North Pole", while M3x0 points
have higher density in the polar region, shown in the figure 3. These results concise with the
previous observation by Marzetta, Hassibi and Hochwald [1].

Figure 1: Distribution of Mx0.

If we count the number of all outcomes M2x0 =(x y z)′ with positive x, we can get the
probability P [(x y z)′ : x > 0], which is equivalent to P[x′0M

2x0 > 0]. This method can
be extended to higher dimensions. By such Monte Carlo simulations, we are able to get
the approximations of probabilities P[x′0M

2x0 > 0] in different dimensions. The results are
shown in the table 1.
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Figure 2: Distribution of M2x0.

Figure 3: Distribution of M3x0.
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Dimension n 3 4 5 6 8 10 20 100
P[x′0M

2x0 > 0] 0.707 0.682 0.664 0.651 0.632 0.619 0.586 0.540

Table 1: The probabilities P[x′0M
2x0 > 0] in different dimensions.

3 Distribution of x′0Mx0 and x′0M
2x0

In the third section, we are going to present the theoretical derivation of the probability
density functions of both x′0Mx0 and x′0M

2x0, which is a natural question soon after our
numerical observations in the second section. These proof’s shown below are done by Eaton
and Muirhead in 2008 [2]. For our convinience, we will define the following terminology,
Vk = x′0M

kx0.
Since V1 is equal to x′0Mx0, it is equivalent to the entry M11 on the upper left corner of

the random orthogonal matrix M . The distribution of each entry in a random orthogonal
matrix is well-known in all general dimensions. For dimension n ≥ 3, M2

11 should obey the
Beta distribution with parameters α = 1

2
and β = n−1

2
. It is clear thatM11 and −M11 should

have the same distribution due to the symmetry, the probability density function of V1 is
then given by,

fn(x) =
Γ(n

2
)

Γ(1
2
)Γ(n−1

2
)
(1− x2)(n−3)/2, (1)

while x ranges in −1 ≤ x ≤ 1 and Γ is the gamma function.
In order to further discuss the probability density function of V2, we will partition the

matrix M into the following parts,

M =

(
M11 M12

M21 M22

)
, (2)

where M11 ∈ [−1, 1], M12 ∈ [−1, 1]1×(n−1), M21 ∈ [−1, 1](n−1)×1 and M22 ∈ [−1, 1](n−1)×(n−1).
The definition of M11 concises with the same notation above. Then V2 can be written as,

V2 = x′0M
2x0 = M2

11 +M12M21, (3)

and we can further present V2 as,

V2 = M2
11 + (1−M2

11)
M12

(1−M2
11)

1/2

M21

(1−M2
11)

1/2
. (4)

The motivation for doing this is to normalize both M12 and M21 into norm one, so that the
part M12

(1−M2
11)

1/2
M21

(1−M2
11)

1/2 in the equation above can be seen as an inner product of two unit
vectors in R(n−1).

Let Π and ∆ be two fixed n× n orthogonal matrices, which has the form

Π =

(
1 0
0 Π1

)
, (5)
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∆ =

(
1 0
0 ∆1

)
, (6)

while Π1 and ∆1 are two (n− 1)× (n− 1) orthogonal matrices. Therefore,

ΠM∆ =

(
1 0
0 Π1

)(
M11 M12

M21 M22

)(
1 0
0 ∆1

)
=

(
M11 M12∆1

Π1M21 Π1M22∆1

)
(7)

Due to the properties of orthogonal matrices, M and ΠM∆ should share the same distri-
bution. This is because that the elements in On is one-to-one corresponding to the elements
in ΠOn∆, while On is the group of n×n orthogonal matrices. Then V2 can also be expressed
in the following way,

V2 = x′0ΠM∆ΠM∆x0 = M2
11 + (1−M2

11)
M12

(1−M2
11)

1/2
∆1Π1

M21

(1−M2
11)

1/2
. (8)

Notice that this equation 8 holds for all fixed ∆1 and Π1. Thus, for any random orthogonal
matrices ∆1 and Π1, it should still hold, sinceM and ΠM∆ have the same distribution.Then
we can choose ∆1 and Π1 to be independent uniform on O(n−1), so that ∆1Π1 is again uniform
on O(n−1).

Let u = M12

(1−M2
11)

1/2 and v = M21

(1−M2
11)

1/2 . As we already stated above, u′ and v are both unit
vectors in R(n−1). Then apply the following lemma, we can conclude that, the probability
density function for

M12

(1−M2
11)

1/2
∆1Π1

M21

(1−M2
11)

1/2

must be fn−1(·), as we defined in 1.

Lemma 1. If u and v are fixed unit vectors in Rn, and Q is uniform on On, then the density
function for u′Qv is fn(·).
Proof. If the matrix A can reflex the first coordinate unit vector x0 to u, and the matrix B
can reflex x0 to v, saying the householder matrices, we have u = Ax0 and v = Bx0. Then,
u′Qv = x′0A

′QBx0. Since Q is uniformly distributed, by its invariance property, A′QB is
also uniform on On. Notice that x′0(A′QB)x0 is just the V1 we discussed before. Thus, the
density function of u′Qv is fn(·).

In conclusion of all the statements in this section, we fianlly come to the theorem about
the distribution of V2.

Theorem 1. In the n dimensional space, for M be uniform distributed random orthogonal
matrices, V2 = x′0M

2x0 behaviors as,

V2 = T + (1− T )Y,

where T and Y are two independent random variables. Furthermore, T obeys to the Beta
distribution with parameters α = 1

2
and β = n−1

2
, and the random variable Y has density

function fY
n satisfying

fY
n (x) = fn−1(x) =

Γ(n−1
2

)

Γ(1
2
)Γ(n

2
− 1)

(1− x2)(n−4)/2.
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In fact, by the theorem 2 above, easily we can derive that P(V2 > 0) > 1
2
hosts for any

dimension n ≥ 3. Since V2 can be seen as a linear combination of 1 and a random variable
Y with factor T and 1−T . Y is symmetric over zero, thus the outcome must be more likely
to be positive.

Furthermore, when the dimemsion n becomes larger, T tends to be more possibly sitting
arround zero. Then V2 is now dominated by the distribution of Y . As we know, P(Y > 0) = 1

2

by symmetry, then P(V2 > 0)→ 1
2
as n→∞ follows. These two conclusions are consistent

with our observations listed in table 1, and they well explain the "North Pole" problem in
the case k = 2.

4 Distribution of x′0M 3x0 and More
Eaton and Muirhead also provide the behavior the distribution of V 3 = x′0M

3x0 [2]. Straightly
apply the technique in the V 2 case, we can get to our goal. However, the algebra is very
complicated in V 3 case, the proof of this case will not be shown.

Theorem 2. Let Λi be a random variable with the probability density function f(n+1−i)(·),
while Λ1, Λ2 and Λ3 are pairwisely independent, then V3 behaves as,

V3 = Λ3
1 + 2Λ1(1− Λ2

1)Λ2 + (1− Λ2
1)[−Λ1Λ

2
2 + (1− Λ2

2)Λ3].

From this theorem, we can see that V3 is symmetric over zero. For more general cases
x′0M

kx0 with k ≥ 4, the problem of its behavior in the distribution is still opem.
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