North Pole Problem in Random Orthogonal Matrices

Yi Zeng

Department of Mathematics Massachusetts Institute of Technology

May 17, 2012 18.338 Final Presentation

イロト イヨト イヨト イヨト

Contents

Introduction Numerical Results Theoretical Results

Introduction

Numerical Results

Theoretical Results

▲□→ ▲圖→ ▲厘→ ▲厘→

Э

Introduction

Introduction

Yi Zeng North Pole Problem in Random Orthogonal Matrices

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Introduction

▶ Let *M* be any orthogonal random matrix, x₀ be a fixed vector on the unit sphere in the n-dimensional space. What cay we say about *Mx*₀?

イロン イヨン イヨン イヨン

Introduction

- Let *M* be any orthogonal random matrix, x₀ be a fixed vector on the unit sphere in the n-dimensional space. What cay we say about *Mx*₀?
- Mx_0 is uniformly distributed on the unit sphere. (well known)

イロト イポト イヨト イヨト

Introduction

- Let *M* be any orthogonal random matrix, x₀ be a fixed vector on the unit sphere in the n-dimensional space. What cay we say about *Mx*₀?
- Mx_0 is uniformly distributed on the unit sphere. (well known)
- ▶ Without loss of generality, we fix x₀ at the "North Pole",

$$x_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Introduction

• If M is applied to x_0 twice, do we have the same conclusion?

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction

- If M is applied to x_0 twice, do we have the same conclusion?
- Marzetta Hassibi and Hochwald first notice this is not trival. In their 2002 paper, they report M²x₀ may no longer obey the uniform distribution.

- 4 同 6 4 日 6 4 日 6

Introduction

- If M is applied to x_0 twice, do we have the same conclusion?
- Marzetta Hassibi and Hochwald first notice this is not trival. In their 2002 paper, they report M²x₀ may no longer obey the uniform distribution.
- Numerical experiment shows in ℝ³, M²x₀ has a higher probability for sitting arround the x₀, ℙ[x'₀M²x₀ > 0] > ¹/₂.

イロト イポト イヨト イヨト

Introduction

- If M is applied to x_0 twice, do we have the same conclusion?
- Marzetta Hassibi and Hochwald first notice this is not trival. In their 2002 paper, they report M²x₀ may no longer obey the uniform distribution.
- Numerical experiment shows in ℝ³, M²x₀ has a higher probability for sitting arround the x₀, ℙ[x'₀M²x₀ > 0] > ¹/₂.
- ► What is the probability density function for the random variable x'₀M^kx₀ in any n-dimensional space?

イロト イポト イヨト イヨト

Numerical Results

Numerical Results

Yi Zeng North Pole Problem in Random Orthogonal Matrices

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Methodology

Random Matrix *M* is generated by the QR factrolization of some *n* × *n* random matrix.

・ロト ・回ト ・ヨト ・ヨト

Methodology

- Random Matrix *M* is generated by the QR factrolization of some *n* × *n* random matrix.
- ► The direction of each column vector of *M* is again randomized by multiplying 1 or −1 to avoid bias in MATLAB.

イロト イヨト イヨト イヨト

Methodology

- Random Matrix *M* is generated by the QR factrolization of some *n* × *n* random matrix.
- ► The direction of each column vector of *M* is again randomized by multiplying 1 or −1 to avoid bias in MATLAB.
- The e_1 component (or say x component) of $M^k x_0$ is $x'_0 M^k x_0$.

イロト イポト イヨト イヨト

n = 3, k = 1

 Mx_0 uniformly distributes on the unit sphere in \mathbb{R}^3 .

イロン イヨン イヨン イヨン

n = 3, k = 2

 $M^2 x_0$ tends to sit closer to the "North Pole", x_0 .

 $\Gamma^2 X_0$

・ロト ・回ト ・ヨト ・ヨト

n = 3, k = 3

 M^3x_0 has higher density in both polar regions.

・ロト ・日本 ・モート ・モート

 $\mathbb{P}_n[x_0'M^2x_0>0]$

Dimension n	3	4	5	6
$\mathbb{P}_n[x_0'M^2x_0>0]$	0.707	0.682	0.664	0.651
Dimension <i>n</i>	8	10	20	100
$\mathbb{P}_n[x_0'M^2x_0>0]$	0.632	0.619	0.586	0.540

Table: The probabilities $\mathbb{P}_n[x'_0M^2x_0 > 0]$ in different dimension n.

Theoretical Results

Theoretical Results

Yi Zeng North Pole Problem in Random Orthogonal Matrices

▲□→ ▲圖→ ▲厘→ ▲厘→

Distribution of $x'_0 M x_0$

• Define $V_k = x'_0 M^k x_0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Distribution of $x_0' M x_0$

- Define $V_k = x'_0 M^k x_0$.
- V₁ is equal to the entry M₁₁ on the upper left corner of the random orthogonal matrix M. For dimension n ≥ 3, M²₁₁ should obey the Beta distribution with α = ¹/₂ and β = ⁿ⁻¹/₂.

イロト イポト イヨト イヨト

Distribution of $x'_0 M x_0$

• Define $V_k = x'_0 M^k x_0$.

- V₁ is equal to the entry M₁₁ on the upper left corner of the random orthogonal matrix M. For dimension n ≥ 3, M²₁₁ should obey the Beta distribution with α = ¹/₂ and β = ⁿ⁻¹/₂.
- M_{11} and $-M_{11}$ should have the same distribution due to the symmetry, the probability density function of V_1 is,

$$f_n(x) = \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n-1}{2})} (1-x^2)^{(n-3)/2}, \tag{1}$$

while x ranges in $-1 \le x \le 1$ and Γ is the gamma function.

Distribution of $x_0' M^2 x_0$

▶ We will partition the matrix *M* into the following parts,

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}, \qquad (2)$$

where
$$M_{11} \in [-1,1]$$
, $M_{12} \in [-1,1]^{1 imes (n-1)}$,
 $M_{21} \in [-1,1]^{(n-1) imes 1}$ and $M_{22} \in [-1,1]^{(n-1) imes (n-1)}$.

Distribution of $x_0' M^2 x_0$

▶ We will partition the matrix *M* into the following parts,

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}, \qquad (2)$$

where
$$M_{11} \in [-1, 1]$$
, $M_{12} \in [-1, 1]^{1 \times (n-1)}$,
 $M_{21} \in [-1, 1]^{(n-1) \times 1}$ and $M_{22} \in [-1, 1]^{(n-1) \times (n-1)}$.

Then V₂ can be written as,

$$V_2 = x_0' M^2 x_0 = M_{11}^2 + M_{12} M_{21}, \qquad (3)$$

・ロト ・回ト ・ヨト ・ヨト

Distribution of $x'_0 M^2 x_0$

• We can further present V_2 as,

$$V_2 = M_{11}^2 + (1 - M_{11}^2) \frac{M_{12}}{(1 - M_{11}^2)^{1/2}} \frac{M_{21}}{(1 - M_{11}^2)^{1/2}}.$$
 (4)

イロン イボン イヨン イヨン 三日

Distribution of $x_0' M^2 x_0$

• We can further present V_2 as,

$$V_2 = M_{11}^2 + (1 - M_{11}^2) \frac{M_{12}}{(1 - M_{11}^2)^{1/2}} \frac{M_{21}}{(1 - M_{11}^2)^{1/2}}.$$
 (4)

▶ The motivation for doing this is to normalize both M_{12} and M_{21} into norm one, so that the part $\frac{M_{12}}{(1-M_{11}^2)^{1/2}} \frac{M_{21}}{(1-M_{11}^2)^{1/2}}$ in the equation above can be seen as an inner product of two unit vectors in $\mathbb{R}^{(n-1)}$.

イロト イポト イヨト イヨト

Distribution of $x_0' M^2 x_0$

Let Π and Δ be two fixed $n\times n$ orthogonal matrices, which has the form

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & \Pi_1 \end{pmatrix}, \Delta = \begin{pmatrix} 1 & 0 \\ 0 & \Delta_1 \end{pmatrix},$$
(5)

while Π_1 and Δ_1 are (n-1) imes (n-1) orthogonal matrices. Then,

$$\Pi M \Delta = \begin{pmatrix} 1 & 0 \\ 0 & \Pi_1 \end{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \Delta_1 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12}\Delta_1 \\ \Pi_1 M_{21} & \Pi_1 M_{22}\Delta_1 \end{pmatrix}$$
(6)

(日) (四) (王) (王) (王)

Distribution of $x'_0 M x_0$

Due to the properties of orthogonal matrices, M and $\Pi M\Delta$ should share the same distribution. This is because that the elements in \mathcal{O}_n is one-to-one corresponding to the elements in $\Pi \mathcal{O}_n \Delta$, while \mathcal{O}_n is the group of $n \times n$ orthogonal matrices. Then V_2 can also be expressed in the following way,

$$V_{2} = x_{0}^{\prime} \Pi M \Delta \Pi M \Delta x_{0}$$
(7)
= $M_{11}^{2} + (1 - M_{11}^{2}) \frac{M_{12}}{(1 - M_{11}^{2})^{1/2}} \Delta_{1} \Pi_{1} \frac{M_{21}}{(1 - M_{11}^{2})^{1/2}}.$ (8)

イロト イポト イヨト イヨト 一日

Distribution of $x'_0 M x_0$

$$V_2 = M_{11}^2 + (1 - M_{11}^2) rac{M_{12}}{(1 - M_{11}^2)^{1/2}} \Delta_1 \Pi_1 rac{M_{21}}{(1 - M_{11}^2)^{1/2}}.$$

Notice that this equation holds for all fixed Δ_1 and Π_1 . Thus, for any random orthogonal matrices Δ_1 and Π_1 , it should still hold, since M and $\Pi M \Delta$ have the same distribution. Then we can choose Δ_1 and Π_1 to be independent uniform on $\mathcal{O}_{(n-1)}$, so that $\Delta_1 \Pi_1$ is again uniform on $\mathcal{O}_{(n-1)}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Distribution of $x'_0 M x_0$

Let $u = \frac{M_{12}}{(1-M_{11}^2)^{1/2}}$ and $v = \frac{M_{21}}{(1-M_{11}^2)^{1/2}}$. As we already stated above, u' and v are both unit vectors in $\mathbb{R}^{(n-1)}$. Then apply the following lemma, we can conclude that, the probability density function for

$$\frac{\textit{M}_{12}}{(1-\textit{M}_{11}^2)^{1/2}}\Delta_1\Pi_1\frac{\textit{M}_{21}}{(1-\textit{M}_{11}^2)^{1/2}}$$

must be $f_{n-1}(\cdot)$, as we defined in calculating V_1 . Lemma. If u and v are fixed unit vectors in \mathbb{R}^n , and Q is uniform on \mathcal{O}_n , then the density function for u'Qv is $f_n(\cdot)$.

(ロ) (同) (E) (E) (E)

Distribution of $x'_0 M x_0$

In the *n* dimensional space, for *M* be uniform distributed random orthogonal matrices, $V_2 = x'_0 M^2 x_0$ behaviors as,

$$V_2=T+(1-T)Y,$$

where T and Y are two independent random variables. Furthermore, T obeys to the Beta distribution with parameters $\alpha = \frac{1}{2}$ and $\beta = \frac{n-1}{2}$, and the random variable Y has density function f_n^Y satisfying

$$f_n^{Y}(x) = f_{n-1}(x) = \frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n}{2}-1)}(1-x^2)^{(n-4)/2}$$

イロト イポト イラト イラト 一日