North Pole Problem in Random Orthogonal Matrices

Yi Zeng
Department of Mathematics
Massachusetts Institute of Technology

May 17, 2012
18.338 Final Presentation

Contents

Introduction

Numerical Results

Theoretical Results

Introduction

Introduction

Introduction

- Let M be any orthogonal random matrix, x_{0} be a fixed vector on the unit sphere in the n-dimensional space. What cay we say about $M x_{0}$?

Introduction

- Let M be any orthogonal random matrix, x_{0} be a fixed vector on the unit sphere in the n-dimensional space. What cay we say about $M x_{0}$?
- $M x_{0}$ is uniformly distributed on the unit sphere. (well known)

Introduction

- Let M be any orthogonal random matrix, x_{0} be a fixed vector on the unit sphere in the n-dimensional space. What cay we say about $M x_{0}$?
- $M x_{0}$ is uniformly distributed on the unit sphere. (well known)
- Without loss of generality, we fix x_{0} at the "North Pole",

$$
x_{0}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Introduction

- If M is applied to x_{0} twice, do we have the same conclusion?

Introduction

- If M is applied to x_{0} twice, do we have the same conclusion?
- Marzetta Hassibi and Hochwald first notice this is not trival. In their 2002 paper, they report $M^{2} x_{0}$ may no longer obey the uniform distribution.

Introduction

- If M is applied to x_{0} twice, do we have the same conclusion?
- Marzetta Hassibi and Hochwald first notice this is not trival. In their 2002 paper, they report $M^{2} x_{0}$ may no longer obey the uniform distribution.
- Numerical experiment shows in $\mathbb{R}^{3}, M^{2} x_{0}$ has a higher probability for sitting arround the $x_{0}, \mathbb{P}\left[x_{0}^{\prime} M^{2} x_{0}>0\right]>\frac{1}{2}$.

Introduction

- If M is applied to x_{0} twice, do we have the same conclusion?
- Marzetta Hassibi and Hochwald first notice this is not trival. In their 2002 paper, they report $M^{2} x_{0}$ may no longer obey the uniform distribution.
- Numerical experiment shows in $\mathbb{R}^{3}, M^{2} x_{0}$ has a higher probability for sitting arround the $x_{0}, \mathbb{P}\left[x_{0}^{\prime} M^{2} x_{0}>0\right]>\frac{1}{2}$.
- What is the probability density function for the random variable $x_{0}^{\prime} M^{k} x_{0}$ in any n-dimensional space?

Numerical Results

Numerical Results

Methodology

- Random Matrix M is generated by the QR factrolization of some $n \times n$ random matrix.

Methodology

- Random Matrix M is generated by the QR factrolization of some $n \times n$ random matrix.
- The direction of each column vector of M is again randomized by multiplying 1 or -1 to avoid bias in MATLAB.

Methodology

- Random Matrix M is generated by the QR factrolization of some $n \times n$ random matrix.
- The direction of each column vector of M is again randomized by multiplying 1 or -1 to avoid bias in MATLAB.
- The e_{1} component (or say x component) of $M^{k} x_{0}$ is $x_{0}^{\prime} M^{k} x_{0}$.

$$
n=3, k=1
$$

$M x_{0}$ uniformly distributes on the unit sphere in \mathbb{R}^{3}.
Γx_{0}

$$
n=3, k=2
$$

$M^{2} x_{0}$ tends to sit closer to the "North Pole", x_{0}.

$$
\Gamma^{2} x_{0}
$$

$$
n=3, k=3
$$

$M^{3} x_{0}$ has higher density in both polar regions.

$$
\Gamma^{3} x_{0}
$$

$\mathbb{P}_{n}\left[x_{0}^{\prime} M^{2} x_{0}>0\right]$

Dimension n	3	4	5	6
$\mathbb{P}_{n}\left[x_{0}^{\prime} M^{2} x_{0}>0\right]$	0.707	0.682	0.664	0.651
Dimension n	8	10	20	100
$\mathbb{P}_{n}\left[x_{0}^{\prime} M^{2} x_{0}>0\right]$	0.632	0.619	0.586	0.540

Table: The probabilities $\mathbb{P}_{n}\left[x_{0}^{\prime} M^{2} x_{0}>0\right]$ in different dimension n .

Theoretical Results

Theoretical Results

Distribution of $x_{0}^{\prime} M x_{0}$

- Define $V_{k}=x_{0}^{\prime} M^{k} x_{0}$.

Distribution of $x_{0}^{\prime} M x_{0}$

- Define $V_{k}=x_{0}^{\prime} M^{k} x_{0}$.
- V_{1} is equal to the entry M_{11} on the upper left corner of the random orthogonal matrix M. For dimension $n \geq 3, M_{11}^{2}$ should obey the Beta distribution with $\alpha=\frac{1}{2}$ and $\beta=\frac{n-1}{2}$.

Distribution of $x_{0}^{\prime} M x_{0}$

- Define $V_{k}=x_{0}^{\prime} M^{k} x_{0}$.
- V_{1} is equal to the entry M_{11} on the upper left corner of the random orthogonal matrix M. For dimension $n \geq 3, M_{11}^{2}$ should obey the Beta distribution with $\alpha=\frac{1}{2}$ and $\beta=\frac{n-1}{2}$.
- M_{11} and $-M_{11}$ should have the same distribution due to the symmetry, the probability density function of V_{1} is,

$$
\begin{equation*}
f_{n}(x)=\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n-1}{2}\right)}\left(1-x^{2}\right)^{(n-3) / 2} \tag{1}
\end{equation*}
$$

while x ranges in $-1 \leq x \leq 1$ and Γ is the gamma function.

Distribution of $x_{0}^{\prime} M^{2} x_{0}$

- We will partition the matrix M into the following parts,

$$
M=\left(\begin{array}{ll}
M_{11} & M_{12} \tag{2}\\
M_{21} & M_{22}
\end{array}\right)
$$

where $M_{11} \in[-1,1], M_{12} \in[-1,1]^{1 \times(n-1)}$,
$M_{21} \in[-1,1]^{(n-1) \times 1}$ and $M_{22} \in[-1,1]^{(n-1) \times(n-1)}$.

Distribution of $x_{0}^{\prime} M^{2} x_{0}$

- We will partition the matrix M into the following parts,

$$
M=\left(\begin{array}{ll}
M_{11} & M_{12} \tag{2}\\
M_{21} & M_{22}
\end{array}\right)
$$

where $M_{11} \in[-1,1], M_{12} \in[-1,1]^{1 \times(n-1)}$,
$M_{21} \in[-1,1]^{(n-1) \times 1}$ and $M_{22} \in[-1,1]^{(n-1) \times(n-1)}$.

- Then V_{2} can be written as,

$$
\begin{equation*}
V_{2}=x_{0}^{\prime} M^{2} x_{0}=M_{11}^{2}+M_{12} M_{21} \tag{3}
\end{equation*}
$$

Distribution of $x_{0}^{\prime} M^{2} x_{0}$

- We can further present V_{2} as,

$$
\begin{equation*}
V_{2}=M_{11}^{2}+\left(1-M_{11}^{2}\right) \frac{M_{12}}{\left(1-M_{11}^{2}\right)^{1 / 2}} \frac{M_{21}}{\left(1-M_{11}^{2}\right)^{1 / 2}} \tag{4}
\end{equation*}
$$

Distribution of $x_{0}^{\prime} M^{2} x_{0}$

- We can further present V_{2} as,

$$
\begin{equation*}
V_{2}=M_{11}^{2}+\left(1-M_{11}^{2}\right) \frac{M_{12}}{\left(1-M_{11}^{2}\right)^{1 / 2}} \frac{M_{21}}{\left(1-M_{11}^{2}\right)^{1 / 2}} \tag{4}
\end{equation*}
$$

- The motivation for doing this is to normalize both M_{12} and M_{21} into norm one, so that the part $\frac{M_{12}}{\left(1-M_{11}^{2}\right)^{1 / 2}} \frac{M_{21}}{\left(1-M_{11}^{1}\right)^{1 / 2}}$ in the equation above can be seen as an inner product of two unit vectors in $\mathbb{R}^{(n-1)}$.

Distribution of $x_{0}^{\prime} M^{2} x_{0}$

Let Π and Δ be two fixed $n \times n$ orthogonal matrices, which has the form

$$
\Pi=\left(\begin{array}{cc}
1 & 0 \tag{5}\\
0 & \Pi_{1}
\end{array}\right), \Delta=\left(\begin{array}{cc}
1 & 0 \\
0 & \Delta_{1}
\end{array}\right),
$$

while Π_{1} and Δ_{1} are $(n-1) \times(n-1)$ orthogonal matrices. Then,
$\Pi M \Delta=\left(\begin{array}{cc}1 & 0 \\ 0 & \Pi_{1}\end{array}\right)\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & \Delta_{1}\end{array}\right)=\left(\begin{array}{cc}M_{11} & M_{12} \Delta_{1} \\ \Pi_{1} M_{21} & \Pi_{1} M_{22} \Delta_{1}\end{array}\right)$.

Distribution of $x_{0}^{\prime} M x_{0}$

Due to the properties of orthogonal matrices, M and $\Pi M \Delta$ should share the same distribution. This is because that the elements in \mathcal{O}_{n} is one-to-one corresponding to the elements in $\Pi \mathcal{O}_{n} \Delta$, while \mathcal{O}_{n} is the group of $n \times n$ orthogonal matrices. Then V_{2} can also be expressed in the following way,

$$
\begin{gather*}
V_{2}=x_{0}^{\prime} \Pi M \Delta \Pi M \Delta x_{0} \tag{7}\\
=M_{11}^{2}+\left(1-M_{11}^{2}\right) \frac{M_{12}}{\left(1-M_{11}^{2}\right)^{1 / 2}} \Delta_{1} \Pi_{1} \frac{M_{21}}{\left(1-M_{11}^{2}\right)^{1 / 2}} . \tag{8}
\end{gather*}
$$

Distribution of $x_{0}^{\prime} M x_{0}$

$$
V_{2}=M_{11}^{2}+\left(1-M_{11}^{2}\right) \frac{M_{12}}{\left(1-M_{11}^{2}\right)^{1 / 2}} \Delta_{1} \Pi_{1} \frac{M_{21}}{\left(1-M_{11}^{2}\right)^{1 / 2}}
$$

Notice that this equation holds for all fixed Δ_{1} and Π_{1}. Thus, for any random orthogonal matrices Δ_{1} and Π_{1}, it should still hold, since M and $\Pi M \Delta$ have the same distribution. Then we can choose Δ_{1} and Π_{1} to be independent uniform on $\mathcal{O}_{(n-1)}$, so that $\Delta_{1} \Pi_{1}$ is again uniform on $\mathcal{O}_{(n-1)}$.

Distribution of $x_{0}^{\prime} M x_{0}$

Let $u=\frac{M_{12}}{\left(1-M_{11}^{2}\right)^{1 / 2}}$ and $v=\frac{M_{21}}{\left(1-M_{11}^{2}\right)^{1 / 2}}$. As we already stated above, u^{\prime} and v are both unit vectors in $\mathbb{R}^{(n-1)}$. Then apply the following lemma, we can conclude that, the probability density function for

$$
\frac{M_{12}}{\left(1-M_{11}^{2}\right)^{1 / 2}} \Delta_{1} \Pi_{1} \frac{M_{21}}{\left(1-M_{11}^{2}\right)^{1 / 2}}
$$

must be $f_{n-1}(\cdot)$, as we defined in calculating V_{1}.
Lemma. If u and v are fixed unit vectors in \mathbb{R}^{n}, and Q is uniform on \mathcal{O}_{n}, then the density function for $u^{\prime} Q v$ is $f_{n}(\cdot)$.

Distribution of $x_{0}^{\prime} M x_{0}$

In the n dimensional space, for M be uniform distributed random orthogonal matrices, $V_{2}=x_{0}^{\prime} M^{2} x_{0}$ behaviors as,

$$
V_{2}=T+(1-T) Y
$$

where T and Y are two independent random variables.
Furthermore, T obeys to the Beta distribution with parameters $\alpha=\frac{1}{2}$ and $\beta=\frac{n-1}{2}$, and the random variable Y has density function $f_{n}{ }^{Y}$ satisfying

$$
f_{n}^{Y}(x)=f_{n-1}(x)=\frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}-1\right)}\left(1-x^{2}\right)^{(n-4) / 2} .
$$

