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Abstract

Recently, there has been an enormous amount of interest in the
use of random matrix theory (RMT) methods in signal processing.
The application of random matrix methods to the analysis of tech-
niques that have been used and studied for years in signal processing
and wireless communications has shed new light onto the behavior of
these methods. It has allowed us to tractably explore phenomena that
we had not been able to understand before, which is one of the reasons
for the immense excitement regarding RMT in the signal processing
community. In this paper, I describe one important problem in signal
processing to which random matrix methods apply quite naturally-
that of sample covariance matrix estimation. This estimation prob-
lem is at the heart of many widely used signal processing algorithms.
One such algorithm is the least squares channel estimation in wireless
underwater communication and. The implications of the random ma-
trix analysis of the SCM on these algorithms is described. It is hoped
that this will shed light on the underlying issues and reasons for using
RMT in signal processing.
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1 Motivation- A Brief Personal Aside

Of late, it seems that everyone around me is talking about random matrix
theory in signal processing. It has emerged as a reliable method to analyze the
algorithms that we take advantage of in wireless underwater communication
(which is one of my primary research interests) in the regimes that we are
interested in. There has been work in various places, including my own
research group, that leverages these tools.

My own work has not taken advantage of random matrix methods, but
it seemed like it could benefit from them. That was one of the primary
motivations for me to take this class- to gain a better understanding of the
methods and why they would be applicable to our work. The former is,
clearly, a prerequisite to understanding the latter.

With the understanding gained over the semester, I am now in a better
position to parse some of the work that has been done in signal processing.
That is the prime motivation for me, personally, to do this project- it’ll give
me a reason to survey some of the results that are in my field. I hope that it
will also serve as an interesting exposition of this area.

2 Signal Processing and the Law of Large

Numbers

Much of statistical signal processing revolves around detection and parameter
estimation. Suppose we want to estimate something about a system, and that
has dimension m, i.e., we want to estimate a “population size” m. We have
n observations of the population.

A lot of the methods used are based on the asymptotic statistics of the
population [1], i.e., the statistics as n → ∞; because as the Law of Large
Numbers tells us, the behavior once we have a large number of observations
becomes “nice”. In other words, the problem of finding and analyzing esti-
mators becomes tractable as n→∞.

In practice, this kind of behavior generally kicks in when n >> m. Un-
fortunately, in modern signal processing, this assumption is often unrealistic.
For instance:

• When we are trying to estimate a parameter of a time-varying system,
where the parameter has dimension m. Before the system changes, we
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only get a small number of observations. Technically, the coherance
time of the system, the time within which the system is nearly station-
ary, might be small, so the number of correlated observations which
are useful for estimation is small. The faster the channel varies, the
fewer the observations we have. The wireless underwater communica-
tion system [2] and the stock market [3] are examples of this.

• The population size might itself grow as the number of observations
grows. Systems like social networks and biological networks [4] are
good examples of this.

• Where the population size is innately large, for instance fast-moving
object tracking with a large number of radar sensors [5].

In all these cases, it is usually fair to assume that n ∼ m. The study
of large dimensional random matrices has proved to be remarkably good at
making predictions about the behavior of such systems. We will see a simple
example in this paper, but a gamut of applications and the corresponding
predictions can be found in [6].

2.1 Why Does Random Matrix Theory Help?

Before proceeding to the examples that concretize the notions here, an intu-
itive explanation of why the predictions are so good may be in order. To my
mind, there are 2 main reasons for this.

2.1.1 “For Mathematicians, 30 ≈ ∞”

This comment, made offhand in one of our classes, is almost perfect when
applied to signal processing. The parameters that we care about estimating
are generally on the order of a few 10s (or more). Large dimensional random
matrix theory is, as we have noted in this course, good for matrices of such
dimensions! This is at the heart of why it works so well- convergence to the
m→∞ is extremely fast, so for the parameter sizes of interest, this is all we
really need to make excellent predictions.

Of course, we could use the exact theory (for finite dimensions), but the
fact is that the large dimensional predictions are already so good, and lead
to so much simpler predictions, that there’s no real benefit of doing so.
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2.1.2 “Almost Anything is IID Gaussian”

While it is true that the bulk of Random Matrix Theory results are for IID
Gaussian entries in the matrix, we often do not encounter such matrices in
practice. It turns out, however, that it does not matter! The results seem
to work well for any matrix, as long as the distributions are “reasonably”
like Gaussians, and as long as the entries are “somewhat” independent (what
these notions mean, of course, needs to be formalized in a given environment).
This is the other reason that the predictions are so good- no matter what
distribution the samples are actually drawn from, the results of RMT seem
to apply.

There are of course a couple of caveats. The convergence rate to these
results can be affected, and if the distributions are really far apart, we’d
have to take the IID Gaussian ensemble based predictions with a grain of
salt. That said, practically speaking, the results have been observed to be
very good.

We now proceed to see an example of the ideas above for a particular
problem- that of channel estimation in wireless communication. We look at
the predictions made and how they shed light on phenomena that have not
otherwise been explained.

2.2 A Note on Notation

In what follows, boldface, lowercase math represents vectors (for instance
u) and boldface uppercase (like U) represents matrices. Non-boldface are
scalars. Observations at time k are denoted like u(k) (so for instance, u(k)
would represent a vector valued observation u at time k). E[·] denotes ex-
pected value and Tr denotes trace. † and T are Hermitian and Transpose of a
matrix, respectively. Finally, N (·, ·) refers to a Gaussian distribution where
the arguments are, respectively, the mean and the covariance matrix.

3 Least Squares Channel Estimation and Sam-

ple Covariance Matrix Estimation

In this section we describe a specific problem- that of Least Squares Channel
Estimation. In the next one, we apply random matrix theory to analyze it
and discuss the results.

4



In communication systems, a channel is something that relates a trans-
mitted signal to a received signal. In other words, a transmitted signal passes
through the channel, and a distorted version is captured by receivers at the
other end. The channel that we refer to is the mathematical model of that
distortion.

To take a specific example, suppose that we want to transmit m×1 vectors
at each time n = 1, 2, . . . . We denote the transmitted vector at time n by
u(n). Assume that u(n) are random vectors with 0 mean and covariance
matrix R, which is termed the data covariance matrix. Assume further that
these vectors are independent from time to time, so that E[u(n)u†(m)] =
Rδ(n−m), where δ is the Dirac delta function.

The last constraint, that of independent input observations, is introduced
for simplicity. It is unlikely to be met in practice- indeed it is somewhat artifi-
cial in the context of communication systems, as inputs are generally vectors
composed of the current transmitted symbol, and the past m − 1 symbols.
Independence of such vectors is evidently a rather unrealistic assumption.
However, as will be seen, we will be able to relax it, because random matrix
theory will give us the tools to deal with the case of a correlated input pro-
cess (this is certainly another benefit of the random matrix framework for
analysis).

We suppose that the us are passed through a finite, time-invariant linear
channel w0. So, the output of the channel at some time n is given by the
scalar :

d(n) = w†0u(n) + v(n) (1)

where v(n) is additive noise. The noise is zero mean, IID, with variance σ2
v ,

i.e., E[v(n)v(m)] = σ2
vδ(n−m). It is further assumed that the noise process

is independent of the input process.
This is the classical model of a linear, time invariant Intersymbol Inter-

ference (ISI) channel. It is so called because the operation of w0 causes the
various elements of u(n) to interfere with each other.

3.1 Least Squares Channel Estimation

One important problem in communication systems is learning w0 from the
us. This is termed channel estimation. If the statistics R and E[u(n)d∗(n)]
were known, then the Weiner filter (MMSE) solution to estimating w0 would
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be given by:
ŵMMSE = R−1E[u(n)d∗(n)] (2)

As these are usually not known, we replace them by their sample values,
giving the so-called Least Squares solution [7]. This is given by:

ŵ(n) = R−1(n)z(n) (3)

where R(n) is an estimated correlation matrix, computed as:

R(n) =
n∑

i=1

u(i)u†(i) + δI (4)

This is the famous Sample Covariance Matrix (for zero mean inputs). The
idea is that as n→∞, R(n)/n→ R, by the Strong Law of Large Numbers.

Also, z(n) is the sample input-output cross-correlation, given by

z(n) =
n∑

i=1

u(i)d∗(i) (5)

A small δ is added in (4) as a diagonal loading parameter which enables
the algorithm to run from the very first observation.

3.2 Performance Metrics

How well does our estimator of (3) do? We compare performance based on
the following:

• The channel estimation error:

ε(n) = w0 − ŵ(n) (6)

• The signal prediction error:

e(n) = d(n)− ŵ†(n)u(n) (7)

With the assumption of large n made, so that 1
n
R(n) ≈ R, it can be

shown that:

E[‖ε(n)‖22] ≈
1

n
σ2
vtr{R−1} (8a)

E[‖e(n)‖22] ≈
1

n
σ2
vtr{R−1}+ σ2

v (8b)
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3.3 What’s Wrong with (8)?

Well, it turns out, nothing, provided n � m. In other words, the approxi-
mations of (8) are a good representation of the performance of the system
provided that the number of observations is much greater than the channel
length (or more generally, the number of parameters we want to estimate).

However, in adaptive signal processing, such as in underwater communi-
cation, we can usually only assume that the channel is “time-invariant” for a
short time- specifically, until it changes! Generally, what this means is that
we end up with n ∼ m observations. The predications of (8) don’t work well
for these cases.

3.4 Why Large-Dimensional Random Matrix Theory?

When we can not assume that 1
n
R(n) ≈ R it becomes important to char-

acterize the statistics of the SCM. The results of large-dimensional random
matrix theory seem to work well at such characterizations, as they provide
(relatively) tractable ways to deal with the “small” number of observations,
for reasons discussed in Section 2.1 . These might give us more insight into
the performance of the algorithm as n ∼ m. So we look at these results next.

4 Random Matrix Theory Results

In [8], some results of interest to this problem were obtained. These are
briefly summarized here. First, define the matrix moment:

Mk(m,n) =
1

m
E
[
Tr
(
R−k(n)

)]
(9)

Then the following expressions can be derived for the channel estimation
error:

E
[
‖ε(n)‖22

]
= m

(
σ2
vM1(m,n) + δ2M2(m,n)− δσ2

vM2(m,n)
)

(10)

. . . and for the signal prediction error:

E
[
‖e(n)‖2

]
= σ2

v −mσ2
vM1(m,n) +m(δ − σ2

v)δM2(m,n) (11)

The question is how to evaluate the moments Mk(m,n) for the matrix
R(n). This is what random matrix theory can help us answer. Two distinct
cases are considered in the paper.
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4.1 Evaluating the Moments

4.1.1 Independent Input Observations

This is the case introduced in the problem statement. Define the matrix
X =

[
u(1) u(2) . . . u(n)

]
, and let A = 1

n
XX†. Then, it’s clear that

the eigenvalues of R(n) are given by λk(R(n)) = nλk(A) + δ. Hence, the
eigenvalue density of the matrix R(n) can be approximated, to a high degree
of accuracy, by:

µR(n)(x) ≈ µΦ(x) =
1

n
µA

(
x− δ
n

)
(12)

if m,n are large but m/n = c is a constant. This follows from the Marcenko-
Pastur Law (and some simple algebra).

Once we have the eigenvalue density, finding the moments is easy- we just
“assume” that m is large, and use that, for some m×m random matrix, B:

lim
m→∞

1

m
E[Tr

(
Bk
)
] =

∫
tkµB(t) dt (13)

So, we can compute the moments as

Mk(m,n) ≈
∫
t−kµΦ(t) dt (14)

Plugging in yields the following (slightly ugly) expressions for the mo-
ments:

M1(m,n) =

√
δ2 + (m− n)2 + 2δ(m+ n)− |n−m| − δ

2δm
(15a)

M2(m,n) =
(m− n)2 + δ(m+ n)

2δ2m
√
δ2 + (m− n)2 + 2δ(m+ n)

−
|n−m|

√
δ2 + (m− n)2 + 2δ(m+ n)

2δ2m
√
δ2 + (m− n)2 + 2δ(m+ n)

(15b)

which can be plugged back into (10) and (11) to get the relevant results.
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4.1.2 Correlated Input Process

This is usually a mess of a problem. However, it can be simplified consid-
erably using some random matrix theory results, again. We use the n > m
(although not significantly more than m) case. In this case, the diagonal load-
ing is essentially irrelevant, so δ ≈ 0. Then, all we care about is M1(n,m).

Now we can use Steiltjes’ transform. In this case, define A = 1
n
T 1/2XX†T 1/2.

We further assume that we allow m,n → ∞ but m/n = c < 1 is a con-
stant.Then, it can be shown that the Steiltjes’ transform satisfies:

SA(z) =

∫
µT (x)dx

(1− c− czSA(z))x− z
(16)

Further, we have that:

SA(z) = lim
m→∞

1

m
E
[
Tr
(
(A− zI)−1

)]
(17)

Using these and (12) (which still applies, as we’ve made the approxima-
tions needed for Marcenko Pastur Law), we may see that

M1(n,m) = lim
z→0−

SR(n)(z) ≈ lim
z→0−

SΦ(z) (18)

which can then be evaluated using (16). Doing that and taking the limit as
z → 0− yields:

SΦ(0−) =
1

mn(1− c)

m∑
k=1

1

λk
(19)

where the λks are the eigenvalues of the input process. Finally, plugging this
back into (10) and (11) gives:

E
[
‖ε(n)‖22

]
=

σ2
v

n−m

m∑
k=1

1

λk
(20)

and

E
[
‖e(n)‖22

]
=

[
1− 1

n−m

n∑
k=1

1

λk

]
σ2
v . (21)

Note that these are for the special case in which n > m, m
n

= c, δ = 0,
which is why we end up with this nice simple form.

9



0 50 100 150 200
−50

−40

−30

−20

−10

0

10
Gaussian input, Channel Length=30, SNR=40 dB

number of observations

d
B

 

 

simulations
theory
n>>m

Figure 1: Channel Estimation MSE vs Number of Observations

5 Results

How well do our predictions above do and what do they tell us? In order
to answer these questions, some Figures from the original paper have been
reproduced here (with permission of the authors). These plots are form = 30,
with the noise covariance chosen to match the SNR of each plot.

First, consider the case of independent input vectors. 2 prediction cases
are considered- where u(n) are IID Gaussian random vectors, and where
they are drawn uniformly from −1, 1m. The plots of the channel estimation
error are shown in Figures 1 and 2, respectively. The signal prediction error
follows similar trends and is not included.

The figures, first of all, show that the RMT based predictor tracks the
performance much better than the conventional error expressions (8). That’s
the first reassuring result. However, in Figure 2, there is a rather strange
effect, where the performance deteriorates with as n increases when n <
m, reaches its worst point at n = m and then gets better again! This is
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Figure 2: Channel Estimation MSE vs Number of Observations
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Figure 3: LTI Channel Estimation Error for Correlated Input Process

unexpected- we expect performance to improve with increasing n, but as it’s
predicted and backed up by simulation, perhaps there is another effect at
play. We will come back to this issue.

Before doing so, however, consider the case of the correlated inputs. Fig-
ure 3 has the corresponding plot, which again reinforce the point that RMT
is good at making predictions about the algorithm performance.

5.1 So What’s the Bump?

We now turn to understanding the performance degradation effect when n ≈
m. First, note that the Least Squares equation can be written in the form:

ŵ(n) = ŵ(n− 1) + R−1(n)u(n)(d(n)− ŵ†(n− 1)u(n))∗ (22)

This structure is what leads to the widely used Recursive Least Squares
algorithm.
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Define k(n) = R−1(n)u(n). For this section, redefine λk and qk to be the
eigenvalues and eigenvectors of R(n) (note that this is not what we have been
using so far!) It turns out that the L2 norm of k(n) is what is important
when trying to understand the performance degradation. This is because
k(n) is what multiplies the error, so if it has a large norm, it will also blow
up the noise.

We can write the L2 norm of k(n) as:

‖k(n)‖22 =

min(m,n)∑
k=1

∣∣∣∣∣q†ku(n)

λk

∣∣∣∣∣
2

(23)

For n < m, the smallest n − m eigenvalues of R(n) are δ, and their
eigenvectors are orthogonal to the space spanned by u(n). So the sum only
goes to min(m,n) to account for these “trivial” eigenvalues.

The sum in (23) is dominated by the smallest of the non-trivial eigen-
values. Now suppose the observation vectors are drawn IID, uniformly from
the unit sphere. Thus, statistically, each one contributes an equal amount
of energy into each of the non-trivial directions spanned by the eigenspace
of R(n). However, as n < m, a new non-trivial direction is obtained with
each observation. The energy along that direction is about 1

n
of the total

energy, so it get smaller and smaller as n approaches m. Hence the minimum
eigenvalue gets smaller ! Once n > m, each successive snapshot contributes
equally in all directions and the minimum eigenvalue grows. This correspond-
ingly increases (or decreases) the norm of k(n), and a large norm leads to
greater error. This explains the performance degradation around n = m.

Indeed the paper also uses a rather more technical method involving the
moments again to analyze this effect in some more detail. Those details are
omitted here.

6 The Upshot

An interesting and important problem in communication - analyzing the
performance of the Least Squares Channel Estimator- has been considered
using RMT. This significantly improves over classical analysis, and leads to
the discovery of a somewhat counterintuitive result- that the performance of
such estimators actually degrades as n increases when n < m and the worst
performance happens when n ≈ m. This effect was also analyzed in the
paper.
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What does this imply about other problems? Clearly, the techniques- at
least the basic ones- needed to analyze signal processing algorithms are all
there in random matrix theory. This paper makes use of perhaps some of
the crudest of these, but still ends up with excellent results. Indeed, such
results are sufficient for many applications. We have many more techniques
available, of course, and as the algorithms we start to work with get more and
more complex, these techniques can get more and more sophisticated. An
excellent overview of these is to be found in [6]. Nonetheless, simple though
the example considered here may be, it gets at all the basic issues involved
in these kinds of analyses- the small number of observations, how to handle
correlated observations, which sort of techniques can be useful, and so on.
It can serve as an introduction, and even perhaps a good example, to a rich
field.
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