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Signal Processing and the Law of Large Numbers

I Want to estimate a “population size” m from n observations

Methods and Analysis based on statistics of population as
n→∞
Usually works if n� m

I Modern signal processing- cases when n ∼ m

Parameter of a time-varying system (eg., underwater
communication)
Population size grows as observations grow (eg., social
networks)
Huge population size (eg., huge array beamformers)

I Random Matrix Theory: excellent at making predictions in
such scenarios
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Why Random Matrix Theory?

For Mathematicians, 30 ≈ ∞
So with reasonable population sizes m ∼ 30 or more, we can make
highly accurate predictions which work for small number of
observations.

Almost Anything is IID Gaussian

Results for IID Gaussian ensembles carry over, in practice, to all sorts
of ensembles (with some caveats!) if they are “reasonably” like
Gaussian, and “more or less” independent.
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Least Squares Channel Estimation- the Problem

I Transmit u(n). . .
m× 1 vectors, independent from time to time
E[u(n)] = 0
E[u(n)u†(m)] = Rδ(n−m)

I . . . across channel w0. . .

outputs: d(n) = w†0u(n) + v(n)
v(n) is noise of power σ2v

I . . . what’s w0?

Don’t know R

Least Squares Solution

ŵ(n) = R−1(n)︸ ︷︷ ︸
=
∑n

i=1 u(i)u
†(i)+δI

=
∑n

i=1 u(i)d
∗(i)︷︸︸︷

z(n) (1)
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Least Squares Channel Estimation-the Challenge

I Idea is as n→∞, the Sample Covariance Matrix R(n)
n
→ R.

I Performance: the channel estimation error ε(n) = w0 − ŵ(n)

I If n→∞ (practically, n� m) is assumed:

E[‖ε(n)‖22] ≈
1

n
σ2
vtr{R−1} (2)

I Bad predictions for n ∼ m

Occurs in applications like underwater acoustic communication,
where channel varies quickly
Or when taking observations is expensive

I Random Matrix Theory allows better predictions
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The Random Matrix Theory Results

Let Mk(m,n) =
1
m
E
[
Tr
(
R−k(n)

)]
. Then. . .

Channel Estimation Error:

E
[
‖ε(n)‖22

]
= m

(
σ2
vM1(m,n) + δ2M2(m,n)− δσ2

vM2(m,n)
)

(3)
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Moments: Independent Input Observations

Let A = 1
n
XX†T 1/2.

2 key ideas to compute the moments:

I Assume m,n are large but c = m
n
is a constant. Then,

eigenvalue density of R(n) can be approximated (Marcenko
Pastur law):

µR(n)(x) ≈ µΦ(x) =
1

n
µA

(
x− δ
n

)
(4)

I Use the following to compute moments:

lim
m→∞

1

m
E[Tr

(
Bk
)
] =

∫
tkµB(t) dt (5)

Compute Moments Using:

Mk(m,n) ≈
∫
t−kµΦ(t) dt (6)
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Predictions Made- Gaussian Input
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Figure : Channel Estimation MSE vs Number of Observations
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Predictions Made- Gaussian Input
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Figure : Channel Estimation MSE vs Number of Observations
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Conclusions

I RMT makes nice predictions about signal processing systems
running with a small number of observations

I Leads to identifying phenomena that were previously unknown

I Simple tools, but widely applicable

I More sophisticated tools available. . . how to use?
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