LIMIT THEOREMS FOR JACOBI ENSEMBLES

CHIHEON KIM

1. INTRODUCTION

Let 8 > 0 be a constant and n > 2 be an integer. A beta-Jacobi ensemble (also
called beta-MANOVA ensemble) is a set of random variables (A1, ..., \,) € [0,1]"
with joint probability density function

n
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where n, m1, mo are parameters, and Cg,, m, is a suitable normalizing constant.

For 8 =1,2 and 4, the eigenvalues of A*A/(A*A + B*B) forms Jacobi ensembles

where A, B are matrices of size m1 X n and mo X n respectively, with independent

standard real, complex or quarternion Gaussian entries.

In this classical setting, various kinds of model can be constructed for Jacobi
ensembles. Starting with a random unitary matrix of size (mj +mg) X (m; +mg)
taken from Haar distribution, the singular values of upper-left m; x n matrix are
distributed according to [1| ([B05]). Tridiagonal model ([ES08], [KN04]) achieves
the full generality that covers any 8 > 0 and removes the condition that mq, ms
are integers.

In this survey, we are mainly interested in the asymptotic behavior of empirical
distribution % Yoy 9y, of Jacobi ensembles as n — oco. It depends on the relative
size of the parameters m; and meo to n. The most interesting case is that m; and
mg grow linearly in n, where the limiting empirical distribution is distinguished
from other known distributions. This was first observed by Watchter [W80] and
rediscovered by Collins [B05], Dumitriu and Paquette [DP12]. In addition, Jiang
[J12] observed that if m; is linear and my is superlinear, then by scaling appro-
priately the limiting distribution becomes a scaled Marchenko-Pastur law.

2. LIMIT THEOREMS

Let Xi,..., X, be independent, identically distributed random variables. By
strong law of large number, its average converges to EX; under some conditions
on variance of the distribution of X;. In similar sense, if “ensemble” of random
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variables (A1,...,\,) is given (not necessarily independent), we can think about

the limit of empirical distribution, % >, 0y, For Hermite ensembles, it is known

to be the famous Wigner’s semicircle law. For Laguerre ensembles, the limiting
distribution follows the Marchenko-Pastur law. Apart from two cases, the asymp-
totic behaviour of Jacobi ensembles is developed later; first observed by Watchter
[WS&0J.

Proposition 2.1 ([DP12]). Let f be a continuous test function on [0, 1].
(1) If my + ma — 2n = o(n), then
1 ¢ 1t f@)
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(3) If my +ma — 2n = w(n) and if (m1 —n)/(my + mg — 2n) — A, then

E3T RO e £,
=1

We are not going to give a rigorous proof here. The sublinear case is simple,
since it is the limit of linear case where p — 1 and ¢ — 1. For superlinear case,
heuristically if mq > n and ms > n, then A*A = fmyl and B*B ~ fmsl. If my
and mg are in the same order, then the empirical distribution would converge to
point mass at my/(my + ma). Or if mg > n and ma > my, the heuristic predicts
that

A*AJ(A*A+ B*B) =~ A*A/(Bma),
hence it tends like Lagurre ensemble. More precisely,

Theorem 2.2 ([J12]). Assume n/my — v € (0,1] and if ma = w(n?), and let

1 n
pn =5y 2 Doga
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Then, i, converges to p in distribution, where p has density du(z) = c- fy(cx)dz
with ¢ = 2v/B and

f7($) .= \/(1‘ — '7—)(7—!— B x)]l

21T [y—v+]

and vy = (/7 £ 1)%.

For the proof of linear cases, refer [W80] and [B05] for using s-transformation
and free probability, and refer [DP12] for calculating moments via tridiagonal
model and combinatorial arguments. Simulation using MATLAB is given in ap-

pendix [B]

3. FLUCTATIONS

Once we figure out what the limiting distribution is, it would be interesting
to find out how empirical distribution behaves in the second order. It is called
deviation in [DEQG]. For Hermite ensembles and Laguerre ensembles we get the
following theorem.

Theorem 3.1 ([DEQ6], informal). Let ¢ be a polynomial. Then,

(1) For 3-Hermite ensemble (A1,...,\n),

-t - [t (31 -t o(2).

where do(z) = 2v/1 — 22dx (semicircle law), and
dx
21vV/1 — 22
(2) For B-Laguerre ensemble (A1,. .., \,) with parameter m s.t. nfB/(2m) —
<1

izzn;Egz,()\i) = /_11 o(z)dv(x) + % (Z -~ 1> /_11 ¢(x)dpr(z) +o (i) )

where dv(z) = ﬁ\/(’ﬁ —z)(x — v_)dx (Marchenko-Pastur law), v+ =

(v7 £ 1)?, and
1 1 dx

dur, = =0, + =0, — .
- S/ T
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In [DP12], the analogous result for Jacobi ensemble is presented.



4 CHIHEON KIM

Theorem 3.2. Let (A1, ..., \,) be a 5-Jacobi ensemble with parameters (n, my, ma).
Assume mi/n —p>1, ma/n—q>1 and p+ q > 2. For any polynomial ¢,

- At 2 A+ 1
> E¢(\i) =n o(x)dp(x) + < — 1) d(x)dps(z) + o ()
P A g A n
where p is as defined in theorem [2.1], and py is the signed measure with density
1 dx

1
dpg = —0x, + —0\_ — 1 .
125 1 At 1 A 2w\/(A+,—-x)(x«—,X,) (A= 21)

REFERENCES

[W80] K. W. Wachter, The limiting empirical measure of multiple discriminant ratios, Ann.
Statist. Volume 8, Number 5 (1980), 937-957.

[KNO04] R. Killip and I. Nenciu, Matrix models for circular ensembles, Int. Math. Res. Not. 50
(2004), 26652701.

[B05] B. Collins, Product of random projections, Jacobi ensembles and universality problems
arising from free probability, Probab. Theory Relat. Fields 133 (2005), 315-344.

[DEO6] I. Dumitriu and A. Edelman, Global spectrum fluctuations for the S-Hermite and (-
Laguerre ensembles via matrix models, J. Math. Phys. 47 (2006), no. 6, 063302, 36.

[ES08] A. Edelman and B. D. Sutton, The beta-Jacobi matrix model, the CS decomposition,
and generalized singular value problems, Found. Comput. Math. 8 (2008), no. 2, 259285.

[DP12] I. Dumitriu and E. Paquette, Global fluctuations for linear statistics of 3-Jacobi ensemble.
Random Matrices: Theory Appl. 01 (2012), 1250013.

[J12] T. Jiang, Limit theorems on beta-Jacobi ensembles. To appear in Bernoulli (2012).

APPENDIX A. MATLAB CODES FOR SIMULATIONS

We used the codes from [ES0O8] to generate Jacobi ensembles.

Code 1. Simulating the limiting distribution of Jacobi ensemble when mj +mg —
2n = o(n).

function jacobi_sublinear(beta, trial, list)

% Case of m_1+m_2-2n = o(n);

% Especially m_1=n+log(n), m_2=n+log(n).

% Empirical distribution obeys the arcsin law asymptotically
t=trial;

e=[1;

syms x f

f=1/(pi*sqrt(x*(1-x)));

F = real(double(subs(f,x,[.01:.02:.99]))); F(F==inf)=0;
M = max(F)*1.2;
for j = 1:length(list)

n = list(j);
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e=[];

for i = 1:t
g = jacobiensemble(beta,n,floor(log(n)),floor(2*xlog(n)));
e = [e;gl;

end

[h,hn,xspan]=histn(e,0,.02,1);
axis([-0.1, 1.1, 0, M]); hold on
plot([.01:.02:.99],F, red’,’LineWidth’,2); drawnow;
hold off

end

Code 2. Simulating the limiting distribution of Jacobi ensemble when mj/n — p
and ma/n — q.

function jacobi_linear(beta, par, trial, list)

% Case of m_1/n = a, m_2/n = b

% Empirical distribution obeys the law f asymptotically
t=trial;

a=par(1);

b=par(2);

A=a/(a+b)*x(1-1/(a+b));

B=1/(a+b)*(1-a/(a+b));

r=(sqrt(A)-sqrt(B))"2;

s=(sqrt (A)+sqrt(B))"2;

e=[1;

syms x f

f=(a+b) *sqrt ((x-r)*(s-x) )/ (2*pi*x*(1-x));

F = real(double(subs(f,x,[.01:.02:.99]))); F(F==inf)=0;
M = max(F)*1.2;

for j = 1:length(list)

n=list(j);

e=[1;

for i = 1:t
g = jacobiensemble(beta,n,a*n-n,b*n-n);
e = [e;gl;

end

[h,hn,xspan]=histn(e,0,.02,1);
axis([0, 1, O, M]); hold on
plot([.01:.02:.99],F, ’red’,’LineWidth’,2); drawnow;
hold off
end
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Code 3. Simulating the limiting distribution of scaled Jacobi ensemble when
my = o(n?) and n/my — 7.

function jacobi_superlinear(beta, a, trial, list)

% Case of m_1/n = a, m_2 = n"3

% (beta*m_2/2n)*lambda asymptotically obeys Marchenko-Pastur law

t=trial;

gamma=1/(a) ;

c=2*gamma/beta;

r = (sqrt(gamma)-1)~2/c;

s = (sqrt(gamma)+1)°2/c;

e=[];

syms x f

f=cxsqrt ((x-s)*(r-x))/(2*gamma*pi*x) ;

xspan=[r: (s-r)/50:s];

F = double(subs(f,x,xspan)); F(F==inf)=0;

M = 1.5%max(F);

for j = 1:length(list)
n = list(j);
e=[1;
for i

g
e

end
histn(e,r, (s-1)/50,s8);
axis([r-1, s+1, 0, M]); hold on
plot (xspan,F,’red’,’LineWidth’,2);
drawnow;
hold off

1:t
jacobiensemble(beta, n, a*n-n, floor(n~3)-n)*n"2%beta/2;
[e;gl;

end

Code 4. Generating normalized histogram by Edelman (http://web.mit.edu/
18.338/www/handouts/handout2. pdf).

function [h,hn,xspan]=histn(data,x0,binsize,xf);

JHISTN Normalized Histogram.

% [H,HN,XSPAN] = HISTN(DATA,XO0,BINSIZE,XF) generates the normalized
% histogram of area 1 from the values in DATA which are binned into
% equally spaced containers that span the region from X0 to XF

% with a bin width specified by BINSIZE.

h

% X0, BINSIZE and XF are all scalars while DATA is a vector.

% H, HN and XSPAN are equally sized vectors.


http://web.mit.edu/18.338/www/handouts/handout2.pdf
http://web.mit.edu/18.338/www/handouts/handout2.pdf
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A

% References:

% [1] Alan Edelman, Handout 2: Histogramming,

% Fall 2004, Course Notes 18.338.

% [2] Alan Edelman, Random Matrix Eigenvalues.
b

% Alan Edelman and Raj Rao, Sept. 2004.

% $Revision: 1.1 $ $Date: 2004/09/10 17:11:18 $
xspan=[x0:binsize:xf];

h=hist(data,xspan); % Generate histogram
hn=h/(length(data)*binsize); % Normalize histogram to have area 1
bar(xspan,hn); % Plot histogram

APPENDIX B. SIMULATIONS

Figure 1, 2, 3 represent results from simulating empirical distribution of Jacobi
ensembles for the case n = 100 with 100 trials. Figure 4, 5, 6 support that theorem
would hold for my = Q(n'*e).

FiGURE 1. =2, m; =n+logn, me=n+2logn
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FIGURE 2. =2, m1 =2n, my =3n

FIGURE 4. 8 =2, m; = 3n, my =n'® n =100
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FIGURE 6. 3 =2, mi = 3n, ms = n'>, n = 10000
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