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1. Introduction

Let β > 0 be a constant and n ≥ 2 be an integer. A beta-Jacobi ensemble (also
called beta-MANOVA ensemble) is a set of random variables (λ1, . . . , λn) ∈ [0, 1]n

with joint probability density function

(1) Cβ,m1,m2 ·
∏

1≤i<j≤n
|λi − λj |β ·

n∏
i=1

λ
β
2
(m1−n+1)−1

i (1− λi)
β
2
(m2−n+1)−1,

where n,m1,m2 are parameters, and Cβ,m1,m2 is a suitable normalizing constant.
For β = 1, 2 and 4, the eigenvalues of A∗A/(A∗A+B∗B) forms Jacobi ensembles
where A, B are matrices of size m1×n and m2×n respectively, with independent
standard real, complex or quarternion Gaussian entries.

In this classical setting, various kinds of model can be constructed for Jacobi
ensembles. Starting with a random unitary matrix of size (m1 +m2)× (m1 +m2)
taken from Haar distribution, the singular values of upper-left m1 × n matrix are
distributed according to 1 ([B05]). Tridiagonal model ([ES08], [KN04]) achieves
the full generality that covers any β > 0 and removes the condition that m1,m2

are integers.

In this survey, we are mainly interested in the asymptotic behavior of empirical
distribution 1

n

∑n
i=1 δλi of Jacobi ensembles as n→∞. It depends on the relative

size of the parameters m1 and m2 to n. The most interesting case is that m1 and
m2 grow linearly in n, where the limiting empirical distribution is distinguished
from other known distributions. This was first observed by Watchter [W80] and
rediscovered by Collins [B05], Dumitriu and Paquette [DP12]. In addition, Jiang
[J12] observed that if m1 is linear and m2 is superlinear, then by scaling appro-
priately the limiting distribution becomes a scaled Marchenko-Pastur law.

2. Limit theorems

Let X1, . . . , Xn be independent, identically distributed random variables. By
strong law of large number, its average converges to EX1 under some conditions
on variance of the distribution of X1. In similar sense, if “ensemble” of random
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variables (λ1, . . . , λn) is given (not necessarily independent), we can think about
the limit of empirical distribution, 1

n

∑n
i=1 δλi . For Hermite ensembles, it is known

to be the famous Wigner’s semicircle law. For Laguerre ensembles, the limiting
distribution follows the Marchenko-Pastur law. Apart from two cases, the asymp-
totic behaviour of Jacobi ensembles is developed later; first observed by Watchter
[W80].

Proposition 2.1 ([DP12]). Let f be a continuous test function on [0, 1].

(1) If m1 +m2 − 2n = o(n), then

1

n

n∑
i=1

f(λi)→P
1

π

∫ 1

0

f(x)√
x(1− x)

dx.

(2) If m1/n→ p ≥ 1, m2/n→ q ≥ 1 and p+ q > 2, then

1

n

n∑
i=1

f(λi)→P

∫ 1

0
f(x)dµ(x),

where µ has density

dµ(x) :=
p+ q

2π

√
(x− λ−)(λ+ − x)

x(1− x)
1[λ−,λ+]dx,

and

λ± :=

[√
p

p+ q
(1− 1

p+ q
)±

√
1

p+ q
(1− p

p+ q
)

]2
.

(3) If m1 +m2 − 2n = ω(n) and if (m1 − n)/(m1 +m2 − 2n)→ λ, then

1

n

n∑
i=1

f(λi)→P f(λ).

We are not going to give a rigorous proof here. The sublinear case is simple,
since it is the limit of linear case where p → 1 and q → 1. For superlinear case,
heuristically if m1 � n and m2 � n, then A∗A ≈ βm1I and B∗B ≈ βm2I. If m1

and m2 are in the same order, then the empirical distribution would converge to
point mass at m1/(m1 +m2). Or if m2 � n and m2 � m1, the heuristic predicts
that

A∗A/(A∗A+B∗B) ≈ A∗A/(βm2),

hence it tends like Lagurre ensemble. More precisely,

Theorem 2.2 ([J12]). Assume n/m1 → γ ∈ (0, 1] and if m2 = ω(n2), and let

µn =
1

n

n∑
i=1

δβm2
2n

.
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Then, µn converges to µ in distribution, where µ has density dµ(x) = c · fγ(cx)dx
with c = 2γ/β and

fγ(x) :=

√
(x− γ−)(γ+ − x)

2πγx
1[γ−,γ+]

and γ± = (
√
γ ± 1)2.

For the proof of linear cases, refer [W80] and [B05] for using s-transformation
and free probability, and refer [DP12] for calculating moments via tridiagonal
model and combinatorial arguments. Simulation using MATLAB is given in ap-
pendix B.

3. Fluctations

Once we figure out what the limiting distribution is, it would be interesting
to find out how empirical distribution behaves in the second order. It is called
deviation in [DE06]. For Hermite ensembles and Laguerre ensembles we get the
following theorem.

Theorem 3.1 ([DE06], informal). Let φ be a polynomial. Then,

(1) For β-Hermite ensemble (λ1, . . . , λn),

1

n

n∑
i=1

Eφ(λi) =

∫ 1

−1
φ(x)dσ(x) +

1

n

(
2

β
− 1

)∫ 1

−1
φ(x)dµH(x) + o

(
1

n

)
,

where dσ(x) = 2
π

√
1− x2dx (semicircle law), and

dµH =
1

4
δ1 +

1

4
δ−1 −

dx

2π
√

1− x2
.

(2) For β-Laguerre ensemble (λ1, . . . , λn) with parameter m s.t. nβ/(2m) →
γ ≤ 1,

1

n

n∑
i=1

Eφ(λi) =

∫ 1

−1
φ(x)dν(x) +

1

n

(
2

β
− 1

)∫ 1

−1
φ(x)dµL(x) + o

(
1

n

)
,

where dν(x) = 1
2πγ

√
(γ+ − x)(x− γ−)dx (Marchenko-Pastur law), γ± =

(
√
γ ± 1)2, and

dµL =
1

4
δγ+ +

1

4
δγ− −

dx

2π
√

(γ+ − x)(x− γ−)
.

In [DP12], the analogous result for Jacobi ensemble is presented.
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Theorem 3.2. Let (λ1, . . . , λn) be a β-Jacobi ensemble with parameters (n,m1,m2).
Assume m1/n→ p ≥ 1, m2/n→ q ≥ 1 and p+ q > 2. For any polynomial φ,

n∑
i=1

Eφ(λi) = n

∫ λ+

λ−

φ(x)dµ(x) +

(
2

β
− 1

)∫ λ+

λ−

φ(x)dµJ(x) + o

(
1

n

)
where µ is as defined in theorem 2.1, and µJ is the signed measure with density

dµJ =
1

4
δλ+ +

1

4
δλ− −

dx

2π
√

(λ+ − x)(x− λ−)
1(λ−,λ+).
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Appendix A. MATLAB codes for simulations

We used the codes from [ES08] to generate Jacobi ensembles.

Code 1. Simulating the limiting distribution of Jacobi ensemble when m1+m2−
2n = o(n).

function jacobi_sublinear(beta, trial, list)

% Case of m_1+m_2-2n = o(n);

% Especially m_1=n+log(n), m_2=n+log(n).

% Empirical distribution obeys the arcsin law asymptotically

t=trial;

e=[];

syms x f

f=1/(pi*sqrt(x*(1-x)));

F = real(double(subs(f,x,[.01:.02:.99]))); F(F==inf)=0;

M = max(F)*1.2;

for j = 1:length(list)

n = list(j);
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e=[];

for i = 1:t

g = jacobiensemble(beta,n,floor(log(n)),floor(2*log(n)));

e = [e;g];

end

[h,hn,xspan]=histn(e,0,.02,1);

axis([-0.1, 1.1, 0, M]); hold on

plot([.01:.02:.99],F,’red’,’LineWidth’,2); drawnow;

hold off

end

Code 2. Simulating the limiting distribution of Jacobi ensemble when m1/n→ p
and m2/n→ q.

function jacobi_linear(beta, par, trial, list)

% Case of m_1/n = a, m_2/n = b

% Empirical distribution obeys the law f asymptotically

t=trial;

a=par(1);

b=par(2);

A=a/(a+b)*(1-1/(a+b));

B=1/(a+b)*(1-a/(a+b));

r=(sqrt(A)-sqrt(B))^2;

s=(sqrt(A)+sqrt(B))^2;

e=[];

syms x f

f=(a+b)*sqrt((x-r)*(s-x))/(2*pi*x*(1-x));

F = real(double(subs(f,x,[.01:.02:.99]))); F(F==inf)=0;

M = max(F)*1.2;

for j = 1:length(list)

n=list(j);

e=[];

for i = 1:t

g = jacobiensemble(beta,n,a*n-n,b*n-n);

e = [e;g];

end

[h,hn,xspan]=histn(e,0,.02,1);

axis([0, 1, 0, M]); hold on

plot([.01:.02:.99],F,’red’,’LineWidth’,2); drawnow;

hold off

end
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Code 3. Simulating the limiting distribution of scaled Jacobi ensemble when
m2 = o(n2) and n/m1 → γ.

function jacobi_superlinear(beta, a, trial, list)

% Case of m_1/n = a, m_2 = n^3

% (beta*m_2/2n)*lambda asymptotically obeys Marchenko-Pastur law

t=trial;

gamma=1/(a);

c=2*gamma/beta;

r = (sqrt(gamma)-1)^2/c;

s = (sqrt(gamma)+1)^2/c;

e=[];

syms x f

f=c*sqrt((x-s)*(r-x))/(2*gamma*pi*x);

xspan=[r:(s-r)/50:s];

F = double(subs(f,x,xspan)); F(F==inf)=0;

M = 1.5*max(F);

for j = 1:length(list)

n = list(j);

e=[];

for i = 1:t

g = jacobiensemble(beta, n, a*n-n, floor(n^3)-n)*n^2*beta/2;

e = [e;g];

end

histn(e,r,(s-r)/50,s);

axis([r-1, s+1, 0, M]); hold on

plot(xspan,F,’red’,’LineWidth’,2);

drawnow;

hold off

end

Code 4. Generating normalized histogram by Edelman (http://web.mit.edu/
18.338/www/handouts/handout2.pdf).

function [h,hn,xspan]=histn(data,x0,binsize,xf);

%HISTN Normalized Histogram.

% [H,HN,XSPAN] = HISTN(DATA,X0,BINSIZE,XF) generates the normalized

% histogram of area 1 from the values in DATA which are binned into

% equally spaced containers that span the region from X0 to XF

% with a bin width specified by BINSIZE.

%

% X0, BINSIZE and XF are all scalars while DATA is a vector.

% H, HN and XSPAN are equally sized vectors.

http://web.mit.edu/18.338/www/handouts/handout2.pdf
http://web.mit.edu/18.338/www/handouts/handout2.pdf
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%

% References:

% [1] Alan Edelman, Handout 2: Histogramming,

% Fall 2004, Course Notes 18.338.

% [2] Alan Edelman, Random Matrix Eigenvalues.

%

% Alan Edelman and Raj Rao, Sept. 2004.

% $Revision: 1.1 $ $Date: 2004/09/10 17:11:18 $

xspan=[x0:binsize:xf];

h=hist(data,xspan); % Generate histogram

hn=h/(length(data)*binsize); % Normalize histogram to have area 1

bar(xspan,hn); % Plot histogram

Appendix B. Simulations

Figure 1, 2, 3 represent results from simulating empirical distribution of Jacobi
ensembles for the case n = 100 with 100 trials. Figure 4, 5, 6 support that theorem
2.2 would hold for m2 = Ω(n1+ε).
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Figure 1. β = 2, m1 = n+ log n, m2 = n+ 2 log n
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Figure 2. β = 2, m1 = 2n, m2 = 3n
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Figure 3. β = 2, m1 = 3n, m2 = n3 (Scaled with factor n2)
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Figure 4. β = 2, m1 = 3n, m2 = n1.5, n = 100
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Figure 5. β = 2, m1 = 3n, m2 = n1.5, n = 1000
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Figure 6. β = 2, m1 = 3n, m2 = n1.5, n = 10000
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