
18.337: Eigenvalues of Random Matrices May 19, 2013

Random partitions in Julia

Instructor: Alan Edelman Francisco Unda

1 Overview

We will be working with random matrices, i.e. M = (Mij)ij , where Mij ∼ Fij where Fij is some
distribution. We will also work with permutations, which will be denoted by σ. This work involves
doing computational experiments to verify results that relate the distribution of Plancherel partitions
and GUE eigenvalues. Constructing and operating on these objects is usually computationally
expensive for the size required, so we need to �nd a way to e�ciently sample them, as well as way
of e�ciently computing the limiting distributions. Part of the motivation for this work is trying to
use the increased e�ciency provided by the Julia programming language, and also we wish to �nd
a way to illustrate said result.

1.1 Young Diagrams and SYTs

Given a number n ∈ N, and a partition λ1 ≥ λ2 ≥ . . ., the Young diagram associated to λ =
(λ1, λ2, . . .) is the set of points (i, j), such that j ≤ λi. These are commonly drawn as squares, and
in descending order: The partition (5, 3, 3, 1) of 12 is denoted by:

.

The conjugate partition λ′ of a partition λ is the one obtained by exchanging rows and columns
in the Young diagram, in our example the conjugate partition is (4, 3, 3, 1, 1). A Young tableau is
a completion of the boxes of a Young diagram with natural numbers, and it is called standard if
these numbers are increasing by column and by row. The partition associated to a Young diagram
or tableau is called the shape of the tableau, and the terms of a partition λ are called its parts.

1.2 The RSK algorithm

The Robinson-Schensted-Knuth correspondence is a constructive bijection between permutations of
size n and pairs of SYTs of the same shape. Take a permutation σ = (σ1, . . . , σn). Start with two
empty tableaus P and Q, and for each i = 1, . . . , n, insert σi the following way: Call x = σi, and
starting of the �rst column, look in P for the smallest number in that column that is bigger than x;
if there is none, put x at the end of the column, i in the same position in Q, and go to the next i.
If such a number exists, put x in its position, put the number you removed in x, and move to the
next column. As an example, the image by this bijection of the permutation (3241) is

1 2 3

4

1 2 4

3 .

Note that the operation in the columns can be done with binary search, since the partially built
tableau has sorted columns, since it is standard. The algorithm used for generating the P tableau
given a permutation can be found in appendix A.
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1.3 Plancherel measure

We are interested in the function that associates to each permutation, the shape of the tableaux in
the RSK correspondence. This application is clearly not a bijection and we call fλ the number of
SYT of shape λ. Since the RSK correspondence is a bijection, we must have

n! =
∑
λ

f2λ.

Furthermore, if we choose a permutation σ with uniform probability among all permutations of [n],

the probability of picking a shape λ is
f2
λ

n! . This measure over the space of partitions of n is called
the Plancherel measure. We will use the RSK correspondence then to sample partitions with this
measure, and from now on unless stated otherwise, we will assume λ is drawn from this distribution.
On a �nal note, we recall that fλ is given by the hook-length formula:

fλ =
n!

Πx∈T (λ)h(x)
.

Where T (λ) is the associated Young diagram, and h(x), the hook-length of x is de�ned to be
the number of squares to the right and below x, including x once. As an example if λ = (3, 1),
fλ = 4!

4×2×1×1 = 3, which corresponds to the SYTs

1 2 3

4

1 2 4

3

1 3 4

2 .

In particular, this formula tells us that fλ′ = fλ, and then if λ is a random permutation following
the Plancherel measure, λ′ is also distributed the same way.

One of the earliest results related to this distribution are the studies of the longest increasing
subsequence of a permutation. Given a permutation σ, an increasing subsequence is a sequence
i1 < i2 < . . . < ik such that σi1 < σi2 < . . . < σik . Finding the distribution of the maximum of
such lengths is called Ulam's problem. It is easy to prove, by induction for example, that if λ is
the shape of the partition induced by the permutation σ, then the length of the longest increasing
subsequence is equal to λ′1. By the symmetry observation in the previous section, the distribution
of λ′1 and λ1 is the same. It was proven by Vershik and Kerov [2] that

λ1√
n
→ 2

in probability. This is important for technical reasons in the RSK algorithm, since λ1 and λ′1 are
the number of columns and rows in the corresponding Young tableau, and so will control the size of
the data structure used. We use this result then to estimate the required size of the data structure,
and we increase it if we need to. The algorithm for sampling partitions is given in appendix B.

2 Okounkov's result and corollary

Okounkov's result [1] is the proof of a conjecture by Baik, Deift and Johansson about the behaviour
of these Plancherel partitions. This conjecture states that the sizes of the partition, properly scaled,
behave like the eigenvalues of a GUE matrix. More precisely, consider the eigenvalues E1 ≥ E2 ≥ . . .
of a GUE matrix H, in other words Hii ∼ N(0, 1) and Hij ∼ N(0, 12 ) when i 6= j, and de�ne

yi = n2/3
(
Ei
n1/2

− 2

)
.
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Now if λ = (λ1, λ2, . . .) is a partition and we de�ne

xi = n1/3
(

λi
n1/2

− 2

)
the conjecture states that the distribution of the xi's coincides with the distribution of the yi's in
the limit as n goes to in�nity. The following theorem proved by Okounkov proves this

Theorem 1 In the n → ∞ limit, all mixed moments of the random variables x̂(ξ) exist and are

identical to those of the ŷ(ξ), that is,

lim
n→∞

〈x̂(ξ1) · · · x̂(ξs)〉 = lim
n→∞

〈ŷ(ξ1) · · · ŷ(ξs)〉,

for any s = 1, 2, . . . and any numbers ξ1, . . . , ξs > 0.

This implies the following

Corollary 2 In the n→∞ limit, the joint distribution of x1, . . . , xk is identical to the distribution

of y1, . . . , yk for any �xed k.

3 Numerical evaluation of limit distributions

One last ingredient to use in our numerical experiments is a way to calculate the limit distributions
of the xi's(or yi's). This will be done using Bornemann's method [3], which involves calculating
Fredholm determinants by a discretization. We won't explain this approach in detail, but de�ne

E
(n)
2 (k; J) = P(exactly k eigenvalues of the n× n GUE lie in J)

and
E2(k; J) = lim

n→∞
E

(n)
2 (k;

√
2n+ 2−1/2n−1/6J).

Finally we de�ne

F2(k; s) =

k−1∑
j=0

E2(j; (s,∞)),

the probability that there are less than k eigenvalues greater than s. For example, the Tracy-Widom
distribution is given by F2(1; s), the probability that there are zero eigenvalues greater than s, or
equivalently, the probability that the greatest eigenvalue is less than s. The method is based on
calculating F2(k; s) via the formula

F2(k; s) =

k−1∑
j=0

(−1)j

j!

dj

dzj
det
(
I − zKAi|L2(s,∞)

)
|z=1,

where KAi is the Airy Kernel

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
.

4 Numerical Experiments

The following experiments were conducted on a Windows machine, with an Intel Core i7-3610QM
CPU @ 2.30 Ghz. Plancherel partitions were generated, and the �rst three parts were recorded,
for sizes n = k6, where k = 3, 4, 5, 6. The longest experiment, k = 6 took approximately 11
hours in Julia. The reason for having powers of size, is that it makes the scaling a division by an
integer, and so the histogram bins are easily calculated by y = min(x) : (1/n1/6) : max(x), where
x is the scaled vector of samples. Graphs are plotted in Matlab, with histograms normalized by
[f, z] = hist(x, y); bar(z, f/trapz(z, f)).
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4.1 Largest Eigenvalue

The �rst computation was a simple one, we study the largest part of the partition, and compare it
to the largest eigenvalue of the GUE. The corresponding limiting distribution is the Tracy-Widom
distribution. Figure 1 shows the histogram of 104 samples with k = 5.

Figure 1: Largest part of plancherel partition histogram and plot of Tracy-Widom distribution.

4.2 Substraction of the �rst and second eigenvalues

We computed the value r = λ1 − λ2 from our samples, and the corresponding distribution

G(s) = P (λ1 − λ2 ≤ s) =

∫ ∞
−∞

(∂xF (t, t)− ∂xF (t, t− s)) dt

where F is the joint distribution of (λ1, λ2), was computed using F by numerical integration. Figure
2 shows k = 5 with 104 samples.

Figure 2: Histogram of the substraction of the two largest parts of a Plancherel partition and plot
of the corresponding limiting distribution.
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4.3 Joint distribution of the �rst and second eigenvalues

We plotted a two dimensional histogram of the �rst and second parts of the Plancherel partition
with the surface z = ∂x∂yF (x, y). Figure 3 shows k = 6, and 104 samples.

Figure 3: Two dimensional histogram of the two largest part of plancherel partition, along with the
limiting distribution of the �rst eigenvalues of a GUE matrix.

4.4 Other experiments

In general we can see in these experiments that Okounkov's result is veri�ed, although the slow
convergence might mean that there is something to be said about the discrepancy. It might also be
a consequence of the fact that the support of the scaled Plancherel parts is a lattice whose precision
grows as n1/6. All the code, and data used to produce these experiments is commented and adjoined.
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A RSK algorithm

The following is an algorithm in Julia that computes the SYT P , given a permutation.

# rsk . j l

f unc t i on rsk ( seq )
## Input : seq . . . a sequence o f whole numbers ( a l l >= 0)
## Output : A pa r t i t i o n P captur ing l a r g e s c a l e s o r t i n g s t r u c tu r e

n = length ( seq )
m1 = convert ( Int , round (2∗ s q r t (n ) ) )
m2 = convert ( Int , round (2∗ s q r t (n ) ) )
P = NaN∗ ones (m1,m2)
f o r i =1:n

new = seq [ i ]
f o r j =1:n

i f j > m2
P = [P NaN∗ ones (m1,m2) ]
m2 = 2∗m2

end
k = 1
whi le P[ k , j ] <= new

k+=1
i f ( k > m1)

P = [P ; NaN∗ ones (m1,m2) ]
m1 = 2∗m1

end
end
old = P[ k , j ]
P [ k , j ] = new
new = old
i f i snan (new)

break
end

end
end

return P
end
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B Plancherel partition algorithm

This algorithm returns a sample of a partition of n following the Plancherel measure, given n.

# p l an ch e r e lPa r t i t i o n . j l
r e qu i r e (" rsk . j l ")
r e qu i r e (" randperm2 . j l ")
func t i on p l an ch e r e lPa r t i t i o n (n)
## Input : n . . . s i z e o f p a r t i t i o n
## Output : lam . . . random pa r t i t i o n o f n( with p l anche r e l measure )
p = randperm2 (n)
P = rsk (p)
(u , v ) = s i z e (P)
lam = ze ro s ( v )
f o r i =1:v

i f i snan (P[ 1 , i ] )
lam = lam [ 1 : i −1]
break

end
f o r j =1:u

i f i snan (P[ j , i ] )
break

end
lam [ i ] += 1

end
end
return lam
end
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