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Question 

We can use symmetries of Haar measure and index 
permutation tricks to compute integrals over 𝑈 𝑑  like: 

•  𝑈𝑖𝑗𝑑𝑈 = 0 

•  𝑈11
2𝑑𝑈 = 1/𝑑 

•  𝑈𝑖1𝑗1⋯𝑈𝑖𝑛𝑗𝑛𝑈𝑖1′𝑗1′ ⋯𝑈𝑖𝑚′ 𝑗𝑚′ 𝑑𝑈 = 0 if 𝑚 ≠ 𝑛 or if 
there is are no permutations 𝜎, 𝜏 ∈ 𝑆𝑛 such that 
𝜎 𝑖 = 𝑖′ and 𝜏 𝑗 = 𝑗′ 

Is there a general formula for the moments of 𝑼(𝒅)? 

(this would let us compute polynomials in 𝑈𝑖𝑗 and 𝑈𝑖𝑗) 



Answer 

• Yes, and it still involves symmetries of Haar 
measure and index permutations.  

 

• Based on the “classic” Schur-Weyl duality but 
only discovered in 2004 

 

• I hope you like Representation  Theory! 



Representation Theory 

Partition 𝝀 ⊢ 𝒏: non-increasing sequence of non-neg. 
integers that sum to 𝑛.  

𝑷𝒏,𝒅: set of 𝜆 ⊢ 𝑛 with ≤ 𝑑 non-zero entries 

 

Facts: 

• Each 𝜆 ∈ 𝑃𝑛,𝑑 gives a distinct irred. rep’n of 𝑈 𝑑  

denoted 𝝆𝑼 𝒅
𝝀 : 𝑼 𝒅 → 𝑽𝝀 

• Each 𝜆 ⊢ 𝑛 gives a distinct irred. rep’n of 𝑆𝑛 denoted 
𝝆𝑺𝒏
𝝀 : 𝑺𝒏 → 𝑾

𝝀. Denote the character by 𝝌𝝀.  



Schur-Weyl Duality 

𝑈 ∈ 𝑈 𝑑  acts ℂ-linearly on ℂ𝑑
⨂𝑛

 

𝒗𝟏⊗⋯⊗𝒗𝒏 ↦ 𝑼𝒗𝟏 ⊗⋯⊗ (𝑼𝒗𝒏) 

𝜎 ∈ 𝑆𝑛 acts ℂ-linearly on ℂ𝑑
⨂𝑛

  

𝒗𝟏⊗⋯⊗𝒗𝒏 ↦ 𝒗𝝈−𝟏 𝟏 ⊗⋯⊗𝒗𝝈−𝟏(𝒏) 

Schur-Weyl Duality characterizes joint representation: 

ℂ𝒅
⨂𝒏
≅ 𝑽𝝀⊗𝑾𝝀  

(⊕ is over 𝑃𝑛,𝑑) 



Main Theorem 

 𝑼𝒊𝟏𝒋𝟏𝑼𝒊𝟏
′ 𝒋𝟏
′ ⋯𝑼𝒊𝒏𝒋𝒏𝑼𝒊𝒏′ 𝒋𝒏′ 𝒅𝑼

𝑼(𝒅)

=   𝑾𝒈(𝝉𝝈−𝟏)

{𝝉 𝒋 =𝒋′}{𝝈 𝒊 =𝒊′}

 

 

   Where the Weingarten function 𝑊𝑔 is defined by: 

 

𝑾𝒈 𝝈 =
𝟏

𝒏! 𝟐
 
𝒅𝑺𝒏
𝝀 𝟐

𝒅𝑼 𝒅
𝝀

𝝀∈𝑷𝒏,𝒅 

𝝌𝝀(𝝈) 



Proof Sketch 

For 𝐴 ∈ 𝐸𝑛𝑑 ℂ𝑑
⨂𝑛

 define conditional expectation: 

𝐸 𝐴 =  𝑈⊗𝑛𝐴 𝑈∗ ⊗𝑛𝑑𝑈 

Properties: (use Haar invariance to prove) 

• 𝐸 𝐴  commutes with all unitary actions; unitary 
piece “integrated out”, result lives in 𝑆𝑛 piece 

• 𝑇𝑟 𝐸 𝐴 = 𝑇𝑟(𝐴) ; 𝐸(𝐴) is “trace on 𝑈(𝑑) piece” 

• 𝐸 𝐴𝜌𝑆𝑛
𝑑 𝜎 = 𝐸(𝐴)𝜌𝑆𝑛

𝑑 𝜎  ; leaves alone 𝑆𝑛 actions 

 



Sketch cont’d 

Let 𝐴(𝑖) 𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛 = 𝑒𝑖1′ ⊗⋯⊗ 𝑒𝑖𝑛′   

and 𝐵(𝑗) 𝑒𝑗1′ ⊗⋯⊗ 𝑒𝑗𝑛′ = 𝑒𝑗1⊗⋯⊗ 𝑒𝑗𝑛  and define 

both to be zero on other std basis vectors. Then: 

𝑇𝑟 𝐴(𝑖)𝐸 𝐵(𝑗) =  𝑈𝑖1𝑗1⋯𝑈𝑖𝑛𝑗𝑛𝑈𝑖1′𝑗1′ ⋯𝑈𝑖𝑛′ 𝑗𝑛′𝑑𝑈

𝑈(𝑑)

 

Which is the LHS of the theorem. For RHS need some 
algebraic properties… 



Sketch cont’d 

Define Φ:𝐸𝑛𝑑 ℂ ⊗𝑛 → ℂ𝑑 𝑆𝑛 ⊂ ℂ[𝑆𝑛] by: 

Φ 𝐴 =  𝑇𝑟 𝐴𝜌𝑆𝑛
𝑑 (𝜎−1) 𝜎

𝜎∈𝑆𝑛

 

Properties: 

• Φ 𝐴  compatible with left and right multiplication 

• Φ 𝐴 = 𝐸 𝐴 Φ id  

• Φ 𝑖𝑑 = 𝜒𝑆𝑛
𝑑 = ∑𝑑𝑈 𝑑

𝜆 𝜒𝜆 

• Φ 𝑖𝑑 −1 = 𝑊𝑔 (use Schur ortho relations, etc) 

• Φ 𝐴𝐸 𝐵 = Φ 𝐴 Φ B 𝑊𝑔 

 

 



Sketch Conclusion 

• Two slides ago: Φ 𝐴(𝑖)𝐸 𝐵(𝑗) 𝑒
= LHS of main thm 

• Previous slide: 
Φ 𝐴(𝑖)𝐸 𝐵(𝑗) 𝑒

= Φ 𝐴 𝑖 Φ 𝐵 𝑗 𝑊𝑔
𝑒

 too 

• Φ 𝐴(𝑖) 𝜎
= 1 if 𝜎 𝑖 = 𝑖′, zero otherwise 

• Φ 𝐵 𝑗 𝜏−1
= 1 if 𝜏 𝑗 = 𝑗′, zero otherwise 

• Products are convolutions 

•  𝑈𝑖1𝑗1⋯𝑈𝑖𝑛𝑗𝑛𝑈𝑖1′𝑗1′ ⋯𝑈𝑖𝑛′ 𝑗𝑛′𝑑𝑈𝑈(𝑑)
=

∑ ∑ 𝑊𝑔(𝜏𝜎−1)𝜏:𝜏 𝑗 =𝑗′𝜎:𝜎 𝑖 =𝑖′  (QED) 



Bonus! 

• I coded up some MATLAB routines to compute 
arbitrary moments for 𝑛 ≤ 5 and any 𝑑 

 

• If someone feels like coding up the Monaghan-
Nakayama rule algorithm we can make it compute 
for arbitrary 𝑛 although performance might be bad 
for large 𝑛… 

– D. Bernstein, The computational complexity of rules for the 
character table of 𝑆𝑛, Journal of Symbolic Computation 37 
(6) (2004) 727-748. 


