An Exact Formula For Integrating Polynomials Over $U(d)$

Presented by Ian Weiner

B. Collins, P. Sniady, Integration With Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group, Commun. Math. Phys. 264 (2006) 773-795. arXiv:math-ph/0402073

Question

We can use symmetries of Haar measure and index permutation tricks to compute integrals over $U(d)$ like:

- $\int U_{i j} d U=0$
- $\int\left|U_{11}\right|^{2} d U=1 / d$
- $\int U_{i_{1} j_{1}} \cdots U_{i_{n} j_{n}} \bar{U}_{i_{1}^{\prime} j_{1}^{\prime}} \cdots \bar{U}_{i_{m}^{\prime} j_{m}^{\prime}} d U=0$ if $m \neq n$ or if there is are no permutations $\sigma, \tau \in S_{n}$ such that $\sigma(i)=i^{\prime}$ and $\tau(j)=j^{\prime}$
Is there a general formula for the moments of $\boldsymbol{U}(\boldsymbol{d})$?
(this would let us compute polynomials in $U_{i j}$ and $\bar{U}_{i j}$)

Answer

- Yes, and it still involves symmetries of Haar measure and index permutations.
- Based on the "classic" Schur-Weyl duality but only discovered in 2004
- I hope you like Representation Theory!

Representation Theory

Partition $\lambda \vdash \boldsymbol{n}$: non-increasing sequence of non-neg. integers that sum to n.
$\boldsymbol{P}_{n, d}$: set of $\lambda \vdash n$ with $\leq d$ non-zero entries

Facts:

- Each $\lambda \in P_{n, d}$ gives a distinct irred. rep'n of $U(d)$ denoted $\rho_{U(d)}^{\lambda}: U(\boldsymbol{d}) \rightarrow V^{\lambda}$
- Each $\lambda \vdash n$ gives a distinct irred. rep'n of S_{n} denoted $\rho_{S_{n}}^{\lambda}: S_{n} \rightarrow W^{\lambda}$. Denote the character by χ^{λ}.

Schur-Weyl Duality

$U \in U(d)$ acts \mathbb{C}-linearly on $\left(\mathbb{C}^{d}\right)^{\otimes n}$

$$
v_{1} \otimes \cdots \otimes v_{n} \mapsto\left(\boldsymbol{U} v_{1}\right) \otimes \cdots \otimes\left(\boldsymbol{U} v_{n}\right)
$$

$\sigma \in S_{n}$ acts \mathbb{C}-linearly on $\left(\mathbb{C}^{d}\right)^{\otimes n}$

$$
v_{1} \otimes \cdots \otimes v_{n} \mapsto v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}
$$

Schur-Weyl Duality characterizes joint representation:

$$
\left(\mathbb{C}^{d}\right)^{\otimes n} \cong \bigoplus\left(V^{\lambda} \otimes W^{\lambda}\right)
$$

$\left(\oplus\right.$ is over $\left.P_{n, d}\right)$

Main Theorem

$\int_{U(d)} U_{i_{1} j_{1}} \bar{U}_{i_{1}^{\prime} j_{1}^{\prime}} \cdots U_{i_{n} j_{n}} \bar{U}_{i_{n}^{\prime} j_{n}^{\prime}} d U=\sum_{\left\{\sigma(i)=i^{\prime}\right\}\left\{\tau(j)=j^{\prime}\right\}} \sum_{i g\left(\tau \sigma^{-1}\right), ~} W$

Where the Weingarten function $W g$ is defined by:

$$
W g(\sigma)=\frac{1}{(n!)^{2}} \sum_{\lambda \in P_{n, d}} \frac{\left(d_{S_{n}}^{\lambda}\right)^{2}}{d_{U(d)}^{\lambda}} \chi^{\lambda}(\sigma)
$$

Proof Sketch

For $A \in \operatorname{End}\left(\mathbb{C}^{d}\right)^{\otimes n}$ define conditional expectation:

$$
E(A)=\int U^{\otimes n} A\left(U^{*}\right)^{\otimes n} d U
$$

Properties: (use Haar invariance to prove)

- $E(A)$ commutes with all unitary actions; unitary piece "integrated out", result lives in S_{n} piece
- $\operatorname{Tr}(E(A))=\operatorname{Tr}(A) ; E(A)$ is "trace on $U(d)$ piece"
- $E\left(A \rho_{S_{n}}^{d}(\sigma)\right)=E(A) \rho_{S_{n}}^{d}(\sigma)$; leaves alone S_{n} actions

Sketch cont'd

Let $A_{(i)}\left(e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}\right)=e_{i_{1}^{\prime}} \otimes \cdots \otimes e_{i_{n}^{\prime}}$
and $B_{(j)}\left(e_{j_{1}^{\prime}} \otimes \cdots \otimes e_{j_{n}^{\prime}}\right)=e_{j_{1}} \otimes \cdots \otimes e_{j_{n}}$ and define both to be zero on other std basis vectors. Then:

$$
\operatorname{Tr}\left(A_{(i)} E\left(B_{(j)}\right)\right)=\int_{U(d)} U_{i_{1} j_{1}} \cdots U_{i_{n} j_{n}} \bar{U}_{i_{1}^{\prime} j_{1}^{\prime}} \cdots \bar{U}_{i_{n}^{\prime} j_{n}^{\prime}} d U
$$

Which is the LHS of the theorem. For RHS need some algebraic properties...

Sketch cont'd

Define $\Phi:$ End $(\mathbb{C})^{\otimes n} \rightarrow \mathbb{C}_{d}\left[S_{n}\right] \subset \mathbb{C}\left[S_{n}\right]$ by:

$$
\Phi(A)=\sum_{\sigma \in S_{n}}\left[\operatorname{Tr}\left(A \rho_{S_{n}}^{d}\left(\sigma^{-1}\right)\right)\right] \sigma
$$

Properties:

- $\Phi(A)$ compatible with left and right multiplication
- $\Phi(A)=E(A) \Phi(\mathrm{id})$
- $\Phi(i d)=\chi_{S_{n}}^{d}=\sum d_{U(d)}^{\lambda} \chi^{\lambda}$
- $\Phi(i d)^{-1}=W g$ (use Schur ortho relations, etc)
- $\Phi(A E(B))=\Phi(A) \Phi(\mathrm{B}) W g$

Sketch Conclusion

- Two slides ago: $\Phi\left(A_{(i)} E\left(B_{(j)}\right)\right)_{e}=$ LHS of main thm
- Previous slide:

$$
\Phi\left(A_{(i)} E\left(B_{(j)}\right)\right)_{e}=\left[\Phi\left(A_{(i)}\right) \Phi\left(B_{(j)}\right) W g\right]_{e} \text { too }
$$

- $\left[\Phi\left(A_{(i)}\right)\right]_{\sigma}=1$ if $\sigma(i)=i^{\prime}$, zero otherwise
- $\left[\Phi\left(B_{(j)}\right)\right]_{\tau^{-1}}=1$ if $\tau(j)=j^{\prime}$, zero otherwise
- Products are convolutions
- $\int_{U(d)} U_{i_{1} j_{1}} \cdots U_{i_{n} j_{n}} \bar{U}_{i_{1}^{\prime} j_{1}^{\prime}} \cdots \bar{U}_{i_{n}^{\prime} j_{n}^{\prime}} d U=$ $\sum_{\sigma: \sigma(i)=i^{\prime}} \sum_{\tau: \tau(j)=j^{\prime}} W g\left(\tau \sigma^{-1}\right)$ (QED)

Bonus!

- I coded up some MATLAB routines to compute arbitrary moments for $n \leq 5$ and any d
- If someone feels like coding up the MonaghanNakayama rule algorithm we can make it compute for arbitrary n although performance might be bad for large n...
- D. Bernstein, The computational complexity of rules for the character table of S_{n}, Journal of Symbolic Computation 37 (6) (2004) 727-748.

