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1 Motivation: Data Analysis

A frequent goal in real world data analysis is estimation of the covariance matrix
of some multivariate variable. For example say we have some true covariance
matrix Σ that is dictating the values of our p dimensional variable x. Then we
would like to know, from a given n samples of x, how to estimate Σ.

We will call our data matrix X, a p by n matrix, with p as the dimension of
our multivariate variable and n the number of independent samples. We assume
that X is drawn from a mean-zero p-dimensional multivariate distribution X ∼
Np(0,Σ). Alternatively, we can write X = Y Σ1/2, where Y is a pxn matrix
with random iid and mean-zero entries, and Σ1/2 is the square root of Σ.

To estimate the covariance matrix, one might just look at the empirical
covariance matrix, E = 1

nX
TX. When p >> n, this is a good approximation

to Σ. However, for p/n finite, the spurious correlations due to finite sampling
will greatly distort the resulting estimated matrix.

For this reason, many areas of data analysis perform Principle Components
Analysis (PCA) to separate signal from noise in the empirical covariance matrix.
To do this, one first looks at the eigenvalues of E, which have some spread. To
estimate Σ, PCA takes the eigenvectors associated with the largest k eigenvalues
of E to form a rank k matrix. In principle, to choose how many of the eigen-
vectors one should keep, the procedure is to only take those eigenvalues that
fall well outside the eigenvalue distribution of the null model. The null model
that is being ruled out in this case is that the true covariance matrix is just an
identity matrix; the expected eigenvalue distribution of E is then given by the
White Marcenko Pastur equation, discussed below. Thus in PCA, one chooses
the eigenvalues that are well outside this null distribution and calls those the
’signal’ eigenvectors.

Despite this practice being widespread, it seems clear that there is room
for improvement. The reliance on using an identity matrix as a null model
for the true covariance matrix is quite crude in areas of statistics where more
detailed and informative null models are available. In fact, there are null models
where the distribution of the empirical eigenvalues has no right edge, which
would imply that performing some sort of simple cutoff using PCA would be
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inappropriate. Therefore, in this project we examine the eigenvalue distributions
of E for general covariance matrices.

2 General Marcenko Pastur Equation

2.1 Historical Note

In 1967 Marcenko and Pastur wrote a paper describing the general solution to
the spectrum of empirical covariance matrices. They also solved this problem
for a specific covariance matrix of interest, the white Wishart matrix (Ip). This
simple closed form solution is often called the Marcenko Pastur equation, which
can lead to a bit of confusion. For the purpose of this paper, the white Marcenko
Pastur (or WMP) will refer to the equation that describes the distribution of
white Wishart matrices, while the Marcenko Pastur (MP) equation will refer to
the self consistent equation that is valid for general covariance matrices.

2.2 The Stieltjes Transform

Before proceeding to the MP equation, we need to define the Stieltjes transform
(also known as the Cauchy transform). For some spectral distribution f(λ), we

define its Stieltjes transform mf (z) =
∫ f(λ)dλ

λ−z defined ∀z ∈ C+. The need for
such a transform is not immediately obvious, but it turns out that many results,
including the MP equation and in general free probability manipulations, rely on
it. The important thing to remember about the Stieltjes transform, besides for
how to correctly spell it, is that it carries the same information as the density
distribution which it represents. Like a fourier transform, we can transform
from one to the other. The ’reverse Stieltjes transform’ is given by the relation
f(λ) = limε→0

1
π Im[mf (x+ iε)]

We can also define the Stieltjes transform of a matrix: for a pxp matrix
A we can compute its eigenvalues,{λi}. From this we can create a continuous
eigenvalue distribution which just places a dirac delta function at the locations of

each of the eigenvalues, fA(x) = 1
p

p∑
i=1

δ(x−λi) . From this we could writemfA =

1
p

p∑
i=1

1

λi − z
, or alternatively mfA(z) = 1

pTr[(A − zI)−1]. (For convenience we

will do away with the f in the subscript and write mfA as mA below.)

2.3 Relation between XTX and XXT

For the data matrix X we can of course define two empirical covariance matrices,
Ep = 1

nX
TX and En = 1

nXX
T (where for convenience we have divided by

n in both cases). As defined above, the ”interesting” covariance matrix that
we care about is that which describes the relation between the p dimensions,
which would be embodied in the XTX matrix. XTX and XXT share the same
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nonzero eigenvalues; it is just that if n > p then XXT will have n − p zero
eigenvalues (and vice versa is n < p). The useful outcome of this fact is that
since the eigenvalue distributions of the two covariance matrices are very cleanly
defined, we can also write down the formula for the relation between the Stieltjes
transforms of the two distributions:

mEn
(z) =

1

z
(
p

n
− 1) +

p

n
mEp

(z) (1)

The results below will be stated in terms of mEn
(z), despite the fact that as

stated above, we really are interested in mEp
. However, transforming between

the two using the above equation is easy to do.

2.4 The MP Equation

The MP equation has been reformulated a few times since its appearance in the
original paper. Here we choose a particular instantiation of the equation that
was laid out by Silverstein in 1995 [2]. In his paper, he proves the MP equation
under the following set of assumptions.

Let X be the data matrix, which we assume can be written X = Y Σ
1/2
p .

Here Σp is the ’true covariance matrix’, a pxp positive definite matrix. Y is
an nxp matrix with iid entries. Let E[Yi,j ] = 0 and E[|Yi,j |2] = 1. Let the
spectral distribution of Σp be fΣp(λ), and assume that fΣp

converges weakly
to fΣ∞ as p → ∞ . Let mEn

(z) be the Stieltjes transform of the empirical
covariance matrix En = 1

nXX
T . Then the Marcenko Pastur result says that

mEn(z) approaches m∞(z) asymptotically, where m∞ is given by the equation:

− 1

m∞(z)
= z − γ

∫
λfΣ∞(λ)dλ

1 + λm∞(z)
(2)

For general forms of fΣ∞(λ), it is not possible to find an analytical solution
for m. However, we note that in the well known WMP case, we can readily
solve Eqn 2 by plugging in fΣ∞(λ) = δ(λ − 1) to give us 1

m∞
= z − γ 1

1+m∞
,

which can then be solved for m and then fEp .
There are a few other cases where an analytical solution to Eqn 2 is readily

obtainable. However, for the general covariance matrices that we are interested
in, we must turn to numerical solutions.

3 Numerical Solutions to the MP Equation

3.1 How to Solve MP

The road to numerical solutions of the MP equation is straightforward and
relatively obstacle-free. In order to solve Eqn 2 above, we first break up the
equation into its real and imaginary parts. Then we can discretize in z: that is,
for each z of interest we solve for the real and imaginary parts of m that solve
the equations. To solve, one could use their favorite optimization algorithm of
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choice. Here we decided to use the built in Matlab function fsolve, and this
seems to work reasonably well. Once we obtain mEn , we can turn that into
mEp

using Eqn 1 and then obtain fEp
using the reverse Stieltjes transform.

3.2 Examples

As a first test, we input the identity matrix as the true covariance matrix to
our solver. This corresponds to a spectral distribution fΣ(x) = δ(x − 1), the
classical WMP. As shown in Fig 1, the solver gives us the correct distribution,
confirmed with Monte Carlo simulations as well.
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Figure 1: Numerical solution to the Marcenko Pastur equation (in pink) and
Monte Carlo (in blue) of a white Wishart matrix. As expected, we see the WMP
distribution.

Next, we look at the distribution of a slightly less trivial covariance matrix, as
pictured below in Fig 2 . The solution to the MP equation and the simulations
match up well.

We would also like to see solutions to the MP equation for true continuous
distributions of eigenvalues, not just sums of delta functions. We provide two
examples here. The first looks at fΣ(x) = 1

µe
−x/µ. The second example gives

as input the Laguerre matrix ensemble, with the WMP distribution:

fΣ(x) =
1

2πγx

√
(b− x)(x− a)

a = (1− γ1/2)2

b = (1 + γ1/2)2
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Figure 2: A slightly more complicated case. The input to the solver in this
case is the eigenvalue density of the matrix on the left. The resulting numerical
solution matches well with simulations.

In both examples, we see that the MP solution matches experiments well.

4 Further Directions

Thus far, we have used Eqn 2 by solving for m for a given fΣp(λ). In prin-
ciple one would in fact like to do the opposite. That is, for a given empirical
distribution of eigenvalues, we would like to find the best true covariance spec-
tral distribution fΣp(λ). Unfortunately, searching over fΣp(λ) space to find the
distribution which best satisfies Eqn 2 seems difficult. However, it may be
possible to perform such a search where the covariance matrix is parameterized
by a small number of parameters. This seems to work in very simple cases (such
as spiked covariance matrices), and it remains to be seen whether or not this
could be generalized to be of practical use in covariance matrix estimation. For
more on this topic see for example [3].
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Figure 3: The exponential distribution of eigenvalues above, and an example
covariance matrix below.

[2] Silverstein, J. W. (1995). Strong convergence of the empirical distribution
of eigenvalues of large-dimensional random matrices. J. Multivariate Anal.
55, 2, 331? 339.

[3] El Karoui, N., Spectrum estimation for large dimensional covariance matri-
ces using random matrix theory, Ann. Statist. 36 (2008), 2757?2790

6



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4
MP Solution and Simulation, n=70 p=50

 

 

Monte Carlo

Numerical MP

Figure 4: Numerical and experimental results for the exponential eigenvalue
density.
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Figure 5: The WMP distribution of eigenvalues shown above, and an example
covariance matrix below.
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Figure 6: Numerical and experimental results for the WMP eigenvalue density.
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