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1. Introduction

Folkmar Bornemann’s paper [1] on stable methods for evaluating
Random Matrix Theory distributions makes the following claims: for
many important distributions (Tracy-Widom, etc.) and level spacing
functions in general, we are interested in numerically evaluating the
distributions at certain points. In most cases, these distributions have
a representation as both an integral of a special function (solution to
a second order PDE) and a determinantal representation (Fredholm
determinant). Bornemann challenges conventional wisdom - other au-
thors claim that the numerical solution of a Painleve-type PDE (and
subsequent numerical integration) proves more effective, efficient, sta-
ble, and flexible than numerical evaluation of a Fredholm determinant.
To refute this claim, Bornemann tested several numerical approaches to
solving various PDEs, and compared against a custom implementation
of a Fredholm determinant approximation scheme in MATLAB. The
results seem to demonstrate that the Fredholm determinant method is
numerically better behaved for most distributions of interest, as well
as more efficiently computable.

2. Problem Formulations

Definition 2.1 (Gaussian Ensemble Spacing Function). Let J ⊂ R be
an open interval.

E
(n)
β (k; J) ≡ P(k eigenvalues of the n×n Gaussian β-ensemble lie in J)

Let J = (0, s). Then E2(0; J) = probability no eigenvalues in (0, s).
It is a well-known result due to Gaudin that we can express E2(0; J)
as a Fredholm determinant:
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Theorem 2.2 (Gaudin 1961). Given Ksin(x, y) = sinc(π(x− y)),

E2(0, J) = det
(
I −Ksin �L2

J

)
It is important to note that we restrict the kernel to trace-class op-

erators over the Hilbert space of square-integrable functions.
Additionally, we have

E2(0; (0, s)) = exp

(
−
∫ πs

0

σ(x)

x
dx

)
where σ(x) solves a particular form of the Painleve V equation:

(xσ′′)2 = 4(σ − xσ′)(xσ − σ − (σ′)2), σ(x) ≈ x

π
+
x2

π2
(x→ 0)

We’re interested in evaluating E2(0, (0, s)) - the probability that no
eigenvalues are less than s in the GUE. In order to do this, we can
either solve the differential equation for each x in some quadrature rule,
then perform numerical integration to obtain the result, or approximate
the Fredholm determinant. Let’s look at another example, the Tracy-
Widom distribution:

Definition 2.3 (Tracy-Widom Distribution). The Tracy-Widom dis-
tribution is defined by the following function F2(s):

F2(s) ≡ P( no eigenvalues of large-matrix-limit GUE lie in (s,∞))

The Tracy-Widom distribution has a representation as a Fredholm
determinant:

Theorem 2.4 (Bronk 1964). Given

KAi(x, y) =
Ai(x)Ai’(y)− Ai’(x)Ai(y)

x− y
we have

F2(s) = det
(
I −KAi �L2

(s,∞)

)
Additionally, the Tracy-Widom distribution has a representation as

a solution to a PDE:

Theorem 2.5 (Tracy, Widom 1993).

F2(s) = exp

(
−
∫ ∞
s

(x− s)u(x)2dx

)
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where u(x) is the Hastings-McLeod (1980) solution to the Painleve
II equation

u′′ = 2u3 + xu, u(x) ≈ Ai(x) (x→∞)

3. Problem Solutions

3.1. Numerical Approach to PDEs. Bornemann notes that numer-
ically solving PDEs is a time-tested historical tradition in mathematics,
and postulates that the common view (that Painleve-esque formula-
tions are easier to approach than determinants) stems from this histor-
ical tradition. He begins by noting that we can take a straight forward
approach to solving these PDEs - approach them as an initial value
problem with constraints on the asymptotic form of the functions.

Specifically, given an interval (a, b), we seek u(x) that solves

u′′(x) = f(x, u(x), u′(x))

subject to either of the asymptotic one-sided conditions

u(x) ≈ ua(x) (x→ a)

or
u(x) ≈ ub(x) (x→ b)

Given a taylor series expansion for u(x) at the specified boundary
points, we need to choose an initial point and an asymptotic order of
approximation:

choose a+ > a (or b− < b) close to boundary and compute solution
to the (standard) IVP problem

v′′(x) = f(x, v(x), v′(x))

v(a+) = ua(a+), v′(a+) = u′a(a+)

or
v(b−) = ub(b−), v′(b−) = u′b(b−)

However, as noted by Bornemann, this method (solving an IVP)
demonstrates unacceptable numerical instability, even when using an
intelligent numerical integrator with adaptive error control (Runge-
Kutta 4/5 method).

Another approach to solving this PDE is to constrain the value of
the function at both endpoints, rather than constrain the value of the
function and its first derivative at a single endpoint. This formulation
is known as a Boundary Value Problem (BVP).

Additionally, we must use an asymptotic expression ua(x) at (x→ a)
to infer asymptotic expression ub(x) at (x→ b), or vice versa.

We approximate u(x) by solving the BVP:
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v′′(x) = f(x, v(x), v′(x)), v(a+) = ua(a+), v(b−) = ub(b−)

An example of this is the Tracy-Widom Distribution.
Computing F2(s) via computation of u(x) via BVP methods:
By definition, u(x) ≈ Ai(x) (x → ∞) so we take ub(x) = Ai(x).

Choose a+ = −10, b− = 6 (Dieng, 2005).
We need to choose a sufficiently accurate asymptotic expansion for

ua(x). Tracy and Widom show

u(x) =

√
−x

2

(
1 +

1

8
x−3 − 73

128
x−6 +

10657

1024
x−9 +O(x−12)

)
, (x→ −∞)

so we’ll use that for ua(x).
Unfortuantely, the BVP approach also has numerical issues (although

they are less severe than the IVP problem by several orders of magni-
tude). Additionally, the BVP approach requires the evaluator to have
an excellent ability to make informed choices about asymptotic expan-
sions, initial values, boundary values, and PDE discretization step size.
In short, Bornemann finds the method to be too involved to be used
as a black-box evaluation procedure.

3.2. Numerical Approach to Fredholm Determinant. A better
approach to this problem exists: Bornemann approximates the Fred-
holm determinant in the following manner.

The Fredholm determinant

d(z) = det
(
I − zK �L2

(a,b)

)
has the approximation

Am = K(xi, yj)
m
i,j=1

dm(z) = det
(
δij − z · w1/2

i Amw
1/2
j

)
, given quadrature weights wj and nodes xi.

If we want the value of the determinant We can evaluate this deter-
minant in MATLAB fairly easily: we can compute LU of (I − zAm),
and get the determinant from

∏m
j=1 Ujj

Computing dm(z) for a single z takes O(m3) time, but we can do
better (though not asymptotically better) via a QR decomposition if
we care about evaluating at multiple z. We compute eigenvalues λj
of Am via QR (one-time cost of O(m3) time, but has worse constant
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factor than LU in practice), then form

dm(z) =
m∏
j=1

(1− zλj)

Computing dm(z) now takes O(m) time.
The numerics of this approach are much better - we see full conver-

gence to double numerical precision in 1/10th the time.
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