
18.338 Final Report: The distribution of zeros of the derivative of a random polynomial 

Name: Stefanos Nikolaidis    Email:snikol@mit.edu 

I. Introduction 

There has been significant interest on the zeros of the derivative of polynomials, known as 

critical points, when the zeros of the polynomial were known. According to the Gauss-Lucas 

theorem [2], the critical points of a polynomial f lie in the convex hull of the zeros of f. In this 

project, I verified the experiments done in a probabilistic study of the critical points of 

polynomials done in [1], using the Matlab programming environment. Following [1], I present 

Jensen’s theorem and Marden’s theorem in Section II. While these theorems address the 

location of non-real critical points of a polynomial, there has not been any probabilistic study of 

critical points; that is a study on the critical points of a polynomial, whose roots follow some 

distribution. The authors address the question, when the zeros of   
  are stochastically similar to 

the zeros of   . They conjecture that the critical points converge in distribution to the 

distribution of the roots of the polynomial, as the number of roots goes to infinity. They 

support this intuition with two experiments, one where the roots of the polynomial are 

distributed in the unit disk, and one where the roots are distributed in the unit circle. The 

experiments are described in Section III. While results show that the distribution of the critical 

points approximates the one of the roots, an exception to this case is shown in Section IV. 

Finally, the Matlab code for the simulations is presented in the Appendix.  

II. Gauss-Lucas Theorem Extensions 

A.  Jensen’s theorem: If p(z) has real coefficients, then the non-real critical points of p lie in the 

union of the “Jensen Disks”, which are disks one of whose diameters is the segment joining a 

pair of conjugate (non-real) roots of p.  

I implemented an example case in Matlab, and I present the result in Figure 1. I generated 

randomly 10 real numbers which are the coefficients of a polynomial. The blue stars in the 

figure are the roots of the polynomial, and the red stars are the critical points.  

B.  Marden’s theorem: Suppose the zeros z1, z2, and z3 of a third degree polynomial p(z) are 

non-collinear. There is a unique ellipse inscribed in the triangle with vertices z1, z2, and z3 and 

tangent to the sides at their midpoints: the Steiner inellipse. The foci of that ellipse are the 

zeros of the derivative p’(z). 

I implemented an example case in Matlab, where I arbitrarily picked three numbers as the 

coefficients of the polynomial, so that its roots are non-collinear. I then derived the lines 

connecting the three roots, so that they form a triangle. Using an open-source software [3],  



I derived the ellipse inscribed by the triangle and tangent to the sides at the triangle vertices’ 

midpoints. The zeros of the derivative are inside the inscribed ellipse, and approximate the foci 

of the ellipse with some error. The true foci should be closer to the center of the ellipse, and 

the error in this approximation is left for future work.  

 

Figure 1: Jensen's theorem example 

 

Figure 2: Marden's theorem example 
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III. Critical points of polynomials with random roots.  

A. Problem Definition 

Although there has been a study of the critical points, there has not been yet a probabilistic 

study of critical points. Previous work on random polynomials has focused on polynomials with 

coefficients as random variables, but what we focus on the case when the roots of the 

polynomial are drawn from some probability distribution. In [1], the authors define the problem 

as follows. 

Let μ be a probability measure on the complex numbers. Let Xn be random variables on a 

probability space (Ω, F, P) that are IID with common distribution μ. Let   ( ) ∏ (    
 
   ) 

be the random polynomial whose roots are X1, …, Xn. The question addressed in [1] is, when are 

the zeros of   
  stochastically similar to the zeros of   ? The intuition behind this question is 

that if μ concentrates on real numbers,    has all real zeros and the zeros of   
  interlace the 

zeros of   . Therefore, the empirical distribution of the zeros of   
  converges to μ as n →  .   

The authors conjecture that for any μ, as  n→ , Z(f’) converges weakly to μ. To support this 

claim, they did the following two experiments. 

B. Experiment 1: Roots of f uniformly distributed on the unit disk. We want to test, following [1], 

whether the critical points of f will approximate a uniform distribution on the unit disk, as well. 

We sampled 100 complex roots of the polynomial. We then calculated the critical points and 

plotted them in Figure 3. We see that there is some structure, and the viewer may or may not 

be convinced that the roots are uniformly sampled. We then increased the number of 

polynomial degree to 300, and plot the critical points in Figure 4. We see that the result is 

wrong, and we suspect that this is because of numerical issues in the way that Matlab 

calculated the roots of a polynomial of very large degree. Instead, we used the MuPad symbolic 

language [4], that is an add-on to the Mathworks Symbolic Math Toolbox. We plot the critical 

points in Figure 5, and see that there are no errors due to numerical precision issues.   



  

Figure 3: Critical points of polynomial of degree 100 whose roots are uniformly sampled inside unit disk.  

 

  

Figure 4: Critical points of polynomial of degree 1000, whose roots are uniformly sampled inside unit disk, plotted by Matlab, 
where numerical errors affect the result. 
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Figure 5: Critical points of polynomial of degree 500, whose roots are uniformly sampled inside unit disk,  plotted using 
MuPad. 

C. Experiment 2: Roots of f uniformly distributed on the unit circle. We want to test, following 

[1], whether the critical points of f will approximate a uniform distribution on the unit circle, as 

well. We sampled 100 complex roots of the polynomial. We then calculated the critical points 

and plotted them in Figure 6. We verify the result of [1], that shows quick convergence, with 

the presence of a few outliers. 

. 

Figure 6: Critical points of polynomial of degree 100, whose roots are uniformly sampled inside unit circle, plotted using 
Matlab. 
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IV.  Exceptional Cases 

The authors finally provide a counterexample, that shows that one would need to rule out at 

least some exceptional sets of low probability. The authors give the example of  ( )      , 

whose roots converge to the uniform distribution on the unit circle, as n→ . The roots for n = 

10 are plotted in Figure 7.  

 

Figure 7: Roots of polynomial  ( )        

The roots of the derivative of the polynomial are all concentrated at the origin. If one moves 

one of the roots of f(n) along the unit circle, until it meets the next root, a distance of order 
 

 
 , 

the one root of   
  zooms from the origin out to the unit circle. We verified this result, by 

moving one of the roots annotated in red upwards along the segment that connects it to the 

other root annotated in red (Figure 8). For different values of perturbation, we plot the critical 

points in Figure 9. 
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Figure 8: The lower root annotated in red moves towards the other root in red, and for different motions of the root, we plot 
the critical points of the polynomial   

  in Figure 9.  

(a) (b)   

(c) (d)  

Figure 9: a) Critical points of   
   for ( )       . b) Critical points after one root of     moves towards another root 1/10 

of a distance, c) 3/10 of a distance, and d) the root of     becomes equal to another root.  
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Appendix 

A. Jensen’s Theorem  Matlab Code 

JensenTheorem.m 

 
p = rand(1,10); 

rootP = roots(p); 
figure(); 
plot(rootP, ) '*'

rows = size(rootP,1); 

  
hold ; on

 t = 1:rows for

    x(t) = real(rootP(t)); 
    r(t) = abs(imag(rootP(t))); 

    circle(x(t),0,r(t)); 
 end

  
dp = polyder(p); 

rootDP = roots(dp); 
rows = size(rootDP, 1); 

hold ; on

clear  x
plot(rootDP, , , )  '*' 'color' 'r'

--------------- 
circle.m 

 h = circle(x,y,r) function

  
hold  on

th = 0:pi/50:2*pi; 
xunit = r * cos(th) + x; 
yunit = r * sin(th) + y; 

h = plot(xunit, yunit); 
hold  off

 

B. Marden’s Theorem Matlab Code 

MardensTheorem.m  

%This code requires the MVE free software from: 

 http://www.caam.rice.edu/~zhang/mve/index.html

p = [1 +2*i 1 - 1*i 2+2*i] 
rootP = roots(p); 

x = real(rootP); 
y = imag(rootP); 
figure() 

plot(rootP, ) '*'

hold  on

line(x,y) 
line([x(3) x(1)],[y(3) y(1)]) 

  

  
 %writing triangle lines in from Ax = b

sign1 = -1; 

lambda1 = (y(2)-y(1))/(x(2)-x(1)); 



A(1,:) = sign1*[-lambda1, 1]; 
b(1) = sign1*(y(1)-lambda1*x(1)); 

 

sign2 = -1; 

lambda2= (y(3)-y(2))/(x(3)-x(2)); 
A(2,:) = sign2*[-lambda2, 1]; 
b(2) = sign2*(y(2)-lambda2*x(2)); 

  
sign3 = 1; 
lambda3 = (y(1)-y(3))/(x(1)-x(3)); 
A(3,:) = sign3*[-lambda3, 1]; 

b(3) = sign3*(y(3)-lambda3*x(3)); 

  
x0 = [0;-1]; 

  
[x,E] = mve_run(A,b',x0); 

  
fprintf( ) '  drawing ..........\n'

draw_ellipse(A,b,x0,x,E); 

  
DP = polyder(p); 
rootsDP = roots(DP); 

  
plot(rootsDP, , , ) '*' 'color' 'r'

 

C. Experiment 1 Matlab Code 

Exp1.m 

x1=0; 

y1=0; 
rc = 1; 

 t = 1:N for

    [a(t) b(t)] = cirrdnPJ(x1,y1,rc); 
 end

figure; 

  
A = diag([a + b*i]); 

  
p = poly(A); 

dp = polyder(p); 

  
rootsDp = roots(dp); 

  
MS = ; FS = ; ms = 12; fs = 12; 'markersize' 'fontsize'

plot(rootsDp, ,MS,ms) '.k'

circle(0,0,1); 

--------------- 
cirrdnPJ.m 

 [x y]=cirrdnPJ(x1,y1,rc) function

a=2*pi*rand; 
r=sqrt(rand); 

x=(rc*r)*cos(a)+x1 
y=(rc*r)*sin(a)+y1 

 end

 



D. Experiment 2 Matlab Code 

Exp2.m 

N = 100; 

  

x1=0; 

y1=0; 

rc = 1; 

 t = 1:N for

    [a(t) b(t)] = circRG(x1,y1,rc); 

 end

figure; 

  

A = diag(a + b*i); 

p = poly(A); 

dp = polyder(p); 

  

hold ; on

rootsDp = roots(dp); 

  

MS = ; FS = ; ms = 12; fs = 12; 'markersize' 'fontsize'

plot(rootsDp, ,MS,ms) '.k'

axis([-1 1 -1 1]), axis  square

circle(0,0,1); 

--------------- 
circRG.m 

 [x y]=circRG(x1,y1,rc) function

a=2*pi*rand; 

x=(rc)*cos(a)+x1 
y=(rc)*sin(a)+y1 

 end

 

References 

[1] Pemantle, Robin, and Igor Rivin. "The distribution of zeros of the derivative of a random 

polynomial." arXiv preprint arXiv:1109.5975(2011). 

[2] M. Marden. Geometry of Polynomials, volume 3 of Mathematical Surveysand Monographs. 

AMS, 1949. 

[3] Maximum Volume Ellipsoid free software, 

http://www.caam.rice.edu/~zhang/mve/index.html 

[4] Mupad http://www.mathworks.com/discovery/mupad.html 

http://www.caam.rice.edu/~zhang/mve/index.html
http://www.mathworks.com/discovery/mupad.html

