Maximal Correlation Functions: Hermite, Laguerre, and Jacobi

Anuran Makur

EECS Department, Massachusetts Institute of Technology

18.338 Project Presentation 9 May 2016

1 What are maximal correlation functions?

2 The Hermite, Laguerre, and Jacobi cases

3 Why are these joint distributions special?

Pearson Correlation Coefficient:

For two jointly distributed random variables $X \in \mathbb{R}$ and $Y \in \mathbb{R}$ with finite positive variance, the Pearson correlation coefficient is defined as:

$$\rho(X;Y) \triangleq \frac{\mathbb{E}\left[(X - \mathbb{E}[X])\left(Y - \mathbb{E}[Y]\right)\right]}{\sqrt{\mathbb{VAR}(X)\mathbb{VAR}(Y)}}$$

Pearson Correlation Coefficient:

For two jointly distributed random variables $X \in \mathbb{R}$ and $Y \in \mathbb{R}$ with finite positive variance, the Pearson correlation coefficient is defined as:

$$\rho(X; Y) \triangleq \frac{\mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\right]}{\sqrt{\mathbb{VAR}(X)\mathbb{VAR}(Y)}}$$

Properties:

- $|\rho(X; Y)| = 1$ if and only if Y is almost surely a linear function of X.
- X and Y are independent implies that ρ(X; Y) = 0, but the converse is not true.

Definition (Maximal Correlation [Rényi, 1959])

For two jointly distributed random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with positive variance, the Hirschfeld-Gebelein-Rényi maximal correlation is defined as:

$$\rho_{\max}(X;Y) \triangleq \sup_{\substack{f:\mathcal{X} \to \mathbb{R}, g:\mathcal{Y} \to \mathbb{R} \\ \mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0 \\ \mathbb{E}[f^2(X)] = \mathbb{E}[g^2(Y)] = 1}} \mathbb{E}[f(X)g(Y)].$$

Definition (Maximal Correlation [Rényi, 1959])

For two jointly distributed random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with positive variance, the Hirschfeld-Gebelein-Rényi maximal correlation is defined as:

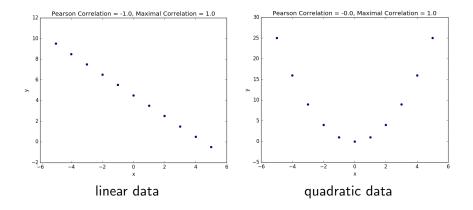
$$\rho_{\max}(X;Y) \triangleq \sup_{\substack{f:\mathcal{X} \to \mathbb{R}, g:\mathcal{Y} \to \mathbb{R} \\ \mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0 \\ \mathbb{E}[f^2(X)] = \mathbb{E}[g^2(Y)] = 1}} \mathbb{E}\left[f(X)g(Y)\right].$$

Properties:

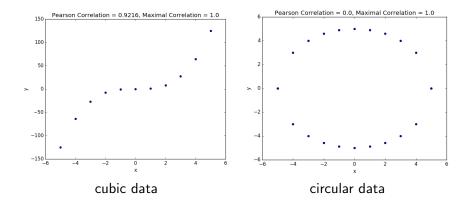
•
$$0 \leq \rho_{\max}(X; Y) \leq 1.$$

- $\rho_{\max}(X; Y) = 0$ if and only if X and Y are independent.
- $\rho_{\max}(X; Y) = 1$ if there exist functions such that f(X) = g(Y) a.s.
- $\rho_{\max}(X; Y) = \rho_{\max}(f(X); g(Y))$ for bijective $f : \mathcal{X} \to \mathbb{R}, g : \mathcal{Y} \to \mathbb{R}$.
- If X and Y are jointly Gaussian, then $\rho_{\max}(X; Y) = |\rho(X; Y)|$.

Examples of Pearson versus Maximal Correlation



Examples of Pearson versus Maximal Correlation



• Fix a joint distribution $P_{X,Y}$ on $\mathcal{X} \times \mathcal{Y} \subseteq \mathbb{R} \times \mathbb{R}$.

- Fix a joint distribution $P_{X,Y}$ on $\mathcal{X} \times \mathcal{Y} \subseteq \mathbb{R} \times \mathbb{R}$.
- Define Hilbert spaces:

$$\begin{aligned} \mathcal{L}^2\left(\mathcal{X},\mathbb{P}_X\right) &\triangleq \left\{f:\mathcal{X}\to\mathbb{R}\,|\,\mathbb{E}\left[f^2(X)\right]<+\infty\right\}\\ \mathcal{L}^2\left(\mathcal{Y},\mathbb{P}_Y\right) &\triangleq \left\{g:\mathcal{Y}\to\mathbb{R}\,|\,\mathbb{E}\left[g^2(Y)\right]<+\infty\right\} \end{aligned}$$

with inner products $\forall f_1, f_2 \in \mathcal{L}^2(\mathcal{X}, \mathbb{P}_X), \langle f_1, f_2 \rangle_{\mathbb{P}_X} \triangleq \mathbb{E}[f_1(X)f_2(X)],$ and $\forall g_1, g_2 \in \mathcal{L}^2(\mathcal{Y}, \mathbb{P}_Y), \langle g_1, g_2 \rangle_{\mathbb{P}_Y} \triangleq \mathbb{E}[g_1(Y)g_2(Y)],$ respectively.

- Fix a joint distribution $P_{X,Y}$ on $\mathcal{X} \times \mathcal{Y} \subseteq \mathbb{R} \times \mathbb{R}$.
- Define Hilbert spaces:

$$\begin{aligned} \mathcal{L}^2\left(\mathcal{X},\mathbb{P}_X\right) &\triangleq \left\{f:\mathcal{X}\to\mathbb{R}\,|\,\mathbb{E}\left[f^2(X)\right]<+\infty\right\}\\ \mathcal{L}^2\left(\mathcal{Y},\mathbb{P}_Y\right) &\triangleq \left\{g:\mathcal{Y}\to\mathbb{R}\,|\,\mathbb{E}\left[g^2(Y)\right]<+\infty\right\} \end{aligned}$$

with inner products $\forall f_1, f_2 \in \mathcal{L}^2(\mathcal{X}, \mathbb{P}_X), \langle f_1, f_2 \rangle_{\mathbb{P}_X} \triangleq \mathbb{E}[f_1(X)f_2(X)],$ and $\forall g_1, g_2 \in \mathcal{L}^2(\mathcal{Y}, \mathbb{P}_Y), \langle g_1, g_2 \rangle_{\mathbb{P}_Y} \triangleq \mathbb{E}[g_1(Y)g_2(Y)],$ respectively.

• Define conditional expectation operators, $C : \mathcal{L}^2(\mathcal{X}, \mathbb{P}_X) \to \mathcal{L}^2(\mathcal{Y}, \mathbb{P}_Y)$ and $C^* : \mathcal{L}^2(\mathcal{Y}, \mathbb{P}_Y) \to \mathcal{L}^2(\mathcal{X}, \mathbb{P}_X)$:

$$\forall f \in \mathcal{L}^2(\mathcal{X}, \mathbb{P}_X), \ (C(f))(y) \triangleq \mathbb{E}[f(X)|Y = y] \\ \forall g \in \mathcal{L}^2(\mathcal{Y}, \mathbb{P}_Y), \ (C^*(g))(x) \triangleq \mathbb{E}[g(Y)|X = x]$$

with operator norms $\|C\|_{op} = \|C^*\|_{op} = 1.$

Theorem (Spectral Characterization [Rényi, 1959])

For random variables X and Y as defined earlier, we have:

$$\rho_{\max}(X;Y) = \sup_{\substack{f:\mathcal{X}\to\mathbb{R}, g:\mathcal{Y}\to\mathbb{R} \\ \mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0\\ \mathbb{E}[f^{2}(X)]=\mathbb{E}[g^{2}(Y)]=1}} \mathbb{E}\left[f(X)g(Y)\right] = \sup_{\substack{f\in\mathcal{L}^{2}(\mathcal{X},\mathbb{P}_{X})\\ \mathbb{E}[f(X)]=0}} \frac{\|C(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}$$

where the supremum is achieved by some $f^* \in \mathcal{L}^2(\mathcal{X}, \mathbb{P}_X)$ if C is a compact operator.

Theorem (Spectral Characterization [Rényi, 1959])

For random variables X and Y as defined earlier, we have:

$$\rho_{\max}(X;Y) = \sup_{\substack{f:\mathcal{X}\to\mathbb{R}, g:\mathcal{Y}\to\mathbb{R} \\ \mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0\\ \mathbb{E}[f^{2}(X)]=\mathbb{E}[g^{2}(Y)]=1}} \mathbb{E}\left[f(X)g(Y)\right] = \sup_{\substack{f\in\mathcal{L}^{2}(\mathcal{X},\mathbb{P}_{X})\\ \mathbb{E}[f(X)]=0}} \frac{\|\mathcal{C}(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}$$

where the supremum is achieved by some $f^* \in \mathcal{L}^2(\mathcal{X}, \mathbb{P}_X)$ if C is a compact operator.

Interpretation:

• C has largest singular value $\|C\|_{op} = 1$ with singular vectors the constant functions $\mathbf{1}_{\mathcal{X}}$ and $\mathbf{1}_{\mathcal{Y}}$: $C(\mathbf{1}_{\mathcal{X}}) = 1.\mathbf{1}_{\mathcal{Y}}$ and $C^*(\mathbf{1}_{\mathcal{Y}}) = 1.\mathbf{1}_{\mathcal{X}}$.

Theorem (Spectral Characterization [Rényi, 1959])

For random variables X and Y as defined earlier, we have:

$$\rho_{\max}(X;Y) = \sup_{\substack{f:\mathcal{X}\to\mathbb{R}, g:\mathcal{Y}\to\mathbb{R} \\ \mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0\\ \mathbb{E}[f^{2}(X)]=\mathbb{E}[g^{2}(Y)]=1}} \mathbb{E}\left[f(X)g(Y)\right] = \sup_{\substack{f\in\mathcal{L}^{2}(\mathcal{X},\mathbb{P}_{X})\\ \mathbb{E}[f(X)]=0}} \frac{\|\mathbb{C}(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}$$

where the supremum is achieved by some $f^* \in \mathcal{L}^2(\mathcal{X}, \mathbb{P}_X)$ if C is a compact operator.

Interpretation:

- C has largest singular value $\|C\|_{op} = 1$ with singular vectors the constant functions $\mathbf{1}_{\mathcal{X}}$ and $\mathbf{1}_{\mathcal{Y}}$: $C(\mathbf{1}_{\mathcal{X}}) = 1.\mathbf{1}_{\mathcal{Y}}$ and $C^*(\mathbf{1}_{\mathcal{Y}}) = 1.\mathbf{1}_{\mathcal{X}}$.
- f^{*} ∈ span(1_X)[⊥] and g^{*} = C (f^{*}) / ρ_{max} (X; Y) are both functions which maximize correlation and singular vectors corresponding to ρ_{max} (X; Y) = second largest singular value of C.

Definition (Maximal Correlation Functions)

If C is compact, we refer to pairs of singular vectors of C excluding the first pair of constant functions as maximal correlation functions.

Definition (Maximal Correlation Functions)

If C is compact, we refer to pairs of singular vectors of C excluding the first pair of constant functions as maximal correlation functions.

For which joint distributions $P_{X,Y}$ are maximal correlation functions orthonormal polynomials?

What are maximal correlation functions?

2 The Hermite, Laguerre, and Jacobi cases

3 Why are these joint distributions special?

Gaussian Conditional Distribution: $P_{Y|X=x} = \mathcal{N}(x, \nu)$ with expectation parameter $x \in \mathbb{R}$ and fixed variance $\nu \in (0, \infty)$

$$\forall x, y \in \mathbb{R}, \ P_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{(y-x)^2}{2\nu}\right)$$

Gaussian Marginal Distribution of *X*: $P_X = \mathcal{N}(0, p)$ with fixed variance $p \in (0, \infty)$

$$\forall x \in \mathbb{R}, \ \ \mathcal{P}_X(x) = rac{1}{\sqrt{2\pi p}} \exp\left(-rac{x^2}{2p}\right)$$

Gaussian Conditional Distribution: $P_{Y|X=x} = \mathcal{N}(x, \nu)$ with expectation parameter $x \in \mathbb{R}$ and fixed variance $\nu \in (0, \infty)$

$$\forall x, y \in \mathbb{R}, \ P_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{(y-x)^2}{2\nu}\right)$$

Gaussian Marginal Distribution of X: $P_X = \mathcal{N}(0, p)$ with fixed variance $p \in (0, \infty)$

$$\forall x \in \mathbb{R}, \ P_X(x) = rac{1}{\sqrt{2\pi p}} \exp\left(-rac{x^2}{2p}\right)$$

Gaussian Marginal Distribution of Y: $P_{Y} = \mathcal{N}(0, p + \nu)$

$$\forall y \in \mathbb{R}, \ P_Y(y) = rac{1}{\sqrt{2\pi(p+
u)}} \exp\left(-rac{y^2}{2(p+
u)}
ight)$$

Theorem (Hermite SVD)

For Gaussian $P_{Y|X}$ and Gaussian P_X as defined earlier, the conditional expectation operator $C : \mathcal{L}^2(\mathbb{R}, \mathbb{P}_X) \to \mathcal{L}^2(\mathbb{R}, \mathbb{P}_Y)$ has SVD:

$$\forall k \in \mathbb{N}, \ C\left(H_k^{(p)}\right) = \sigma_k H_k^{(p+\nu)}$$

where $\{\sigma_k \in (0,1] : k \in \mathbb{N}\}$ are the singular values such that $\sigma_0 = 1$ and $\lim_{k \to \infty} \sigma_k = 0$.

Theorem (Hermite SVD)

For Gaussian $P_{Y|X}$ and Gaussian P_X as defined earlier, the conditional expectation operator $C : \mathcal{L}^2(\mathbb{R}, \mathbb{P}_X) \to \mathcal{L}^2(\mathbb{R}, \mathbb{P}_Y)$ has SVD:

$$\forall k \in \mathbb{N}, \ C\left(H_k^{(p)}\right) = \sigma_k H_k^{(p+\nu)}$$

where $\{\sigma_k \in (0,1] : k \in \mathbb{N}\}\$ are the singular values such that $\sigma_0 = 1$ and $\lim_{k \to \infty} \sigma_k = 0$.

Maximal Correlation Functions:

- {*H*^(p)_k with degree k : k ∈ ℕ} Hermite polynomials that are orthonormal with respect to P_X.
- {*H*^(p+ν)_k with degree k : k ∈ ℕ} Hermite polynomials that are orthonormal with respect to ℙ_Y.

Poisson Conditional Distribution: $P_{Y|X=x} = Poisson(x)$ with rate parameter $x \in (0, \infty)$

$$\forall x \in (0,\infty), \forall y \in \mathbb{N}, \ P_{Y|X}(y|x) = rac{x^y e^{-x}}{y!}$$

Gamma Marginal Distribution of X: $P_X = \text{gamma}(\alpha, \beta)$ with shape parameter $\alpha \in (0, \infty)$ and rate parameter $\beta \in (0, \infty)$

$$\forall x \in (0,\infty), \ P_X(x) = \frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$$

Poisson Conditional Distribution: $P_{Y|X=x} = Poisson(x)$ with rate parameter $x \in (0, \infty)$

$$\forall x \in (0,\infty), \forall y \in \mathbb{N}, \ P_{Y|X}(y|x) = rac{x^y e^{-x}}{y!}$$

Gamma Marginal Distribution of X: $P_X = \text{gamma}(\alpha, \beta)$ with shape parameter $\alpha \in (0, \infty)$ and rate parameter $\beta \in (0, \infty)$

$$\forall x \in (0,\infty), \ P_X(x) = rac{\beta^{lpha} x^{lpha - 1} e^{-\beta x}}{\Gamma(lpha)}$$

Negative Binomial Marginal Distribution of Y: $P_Y = \text{negative-binomial} \left(p = \frac{1}{\beta+1}, \alpha \right)$ with success probability parameter $p \in (0, 1)$ and number of failures parameter $\alpha \in (0, \infty)$

$$\forall y \in \mathbb{N}, \ P_{Y}(y) = \frac{\Gamma(\alpha + y)}{\Gamma(\alpha)y!} \left(\frac{1}{\beta + 1}\right)^{y} \left(\frac{\beta}{\beta + 1}\right)^{\alpha}$$

Theorem (Laguerre SVD)

For Poisson $P_{Y|X}$ and gamma P_X as defined earlier, the conditional expectation operator $C : \mathcal{L}^2((0,\infty), \mathbb{P}_X) \to \mathcal{L}^2(\mathbb{N}, \mathbb{P}_Y)$ has SVD:

$$\forall k \in \mathbb{N}, \ C\left(L_k^{(\alpha,\beta)}\right) = \sigma_k M_k^{\left(\alpha,\frac{1}{\beta+1}\right)}$$

where $\{\sigma_k \in (0,1] : k \in \mathbb{N}\}$ are the singular values such that $\sigma_0 = 1$ and $\lim_{k \to \infty} \sigma_k = 0$.

Theorem (Laguerre SVD)

For Poisson $P_{Y|X}$ and gamma P_X as defined earlier, the conditional expectation operator $C : \mathcal{L}^2((0,\infty), \mathbb{P}_X) \to \mathcal{L}^2(\mathbb{N}, \mathbb{P}_Y)$ has SVD:

$$\forall k \in \mathbb{N}, \ C\left(L_k^{(\alpha,\beta)}\right) = \sigma_k M_k^{\left(\alpha,\frac{1}{\beta+1}\right)}$$

where $\{\sigma_k \in (0,1] : k \in \mathbb{N}\}$ are the singular values such that $\sigma_0 = 1$ and $\lim_{k \to \infty} \sigma_k = 0$.

Maximal Correlation Functions:

- {L^(α,β)_k with degree k : k ∈ ℕ} Laguerre polynomials that are orthonormal with respect to ℙ_X.
- {M_k^{(α,1/(β+1))} with degree k : k ∈ N} Meixner polynomials that are orthonormal with respect to P_Y.

The Jacobi Case

Binomial Conditional Distribution: $P_{Y|X=x} = \text{binomial}(n, x)$ with number of trials parameter $n \in \mathbb{N} \setminus \{0\}$ and success probability parameter $x \in (0, 1)$

$$\forall x \in (0,1), \forall y \in [n] \triangleq \{0,\ldots,n\}, \ P_{Y|X}(y|x) = \binom{n}{y} x^y (1-x)^{n-y}$$

Beta Marginal Distribution of X: $P_X = beta(\alpha, \beta)$ with shape parameters $\alpha \in (0, \infty)$ and $\beta \in (0, \infty)$

$$\forall x \in (0,1), \ P_X(x) = rac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathsf{B}(\alpha,\beta)}$$

The Jacobi Case

Binomial Conditional Distribution: $P_{Y|X=x} = \text{binomial}(n, x)$ with number of trials parameter $n \in \mathbb{N} \setminus \{0\}$ and success probability parameter $x \in (0, 1)$

$$\forall x \in (0,1), \forall y \in [n] \triangleq \{0,\ldots,n\}, \ P_{Y|X}(y|x) = \binom{n}{y} x^y (1-x)^{n-y}$$

Beta Marginal Distribution of X: $P_X = beta(\alpha, \beta)$ with shape parameters $\alpha \in (0, \infty)$ and $\beta \in (0, \infty)$

$$\forall x \in (0,1), \ P_X(x) = rac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathsf{B}(\alpha,\beta)}$$

Beta-Binomial Marginal Distribution of Y: $P_Y = beta-binomial(n, \alpha, \beta)$

$$\forall y \in [n], \ P_Y(y) = \binom{n}{y} \frac{\mathsf{B}(\alpha + y, \beta + n - y)}{\mathsf{B}(\alpha, \beta)}$$

Theorem (Jacobi SVD)

For binomial $P_{Y|X}$ and beta P_X as defined earlier, the conditional expectation operator $C : \mathcal{L}^2((0,1), \mathbb{P}_X) \to \mathcal{L}^2([n], \mathbb{P}_Y)$ has SVD:

$$orall k \in [n], \ C\left(J_k^{(lpha,eta)}
ight) = \sigma_k Q_k^{(lpha,eta)}$$
 $orall k \in \mathbb{N} \setminus [n], \ C\left(J_k^{(lpha,eta)}
ight) = 0$

where $\{\sigma_k \in (0,1] : k \in [n]\}$ are the singular values such that $\sigma_0 = 1$.

Theorem (Jacobi SVD)

For binomial $P_{Y|X}$ and beta P_X as defined earlier, the conditional expectation operator $C : \mathcal{L}^2((0,1), \mathbb{P}_X) \to \mathcal{L}^2([n], \mathbb{P}_Y)$ has SVD:

$$\forall k \in [n], \ C\left(J_k^{(\alpha,\beta)}\right) = \sigma_k Q_k^{(\alpha,\beta)}$$
$$\forall k \in \mathbb{N} \setminus [n], \ C\left(J_k^{(\alpha,\beta)}\right) = 0$$

where $\{\sigma_k \in (0,1] : k \in [n]\}$ are the singular values such that $\sigma_0 = 1$.

Maximal Correlation Functions:

- {J_k^(α,β) with degree k : k ∈ ℕ} Jacobi polynomials that are orthonormal with respect to ℙ_X.
- {Q_k^(α,β) with degree k : k ∈ [n]} Hahn polynomials that are orthonormal with respect to P_Y.

What are maximal correlation functions?

2 The Hermite, Laguerre, and Jacobi cases

3 Why are these joint distributions special?

 P_{Y|X} is a natural exponential family with quadratic variance function (introduced in [Morris, 1982]):

$$\forall x \in \mathcal{X}, \forall y \in \mathcal{Y}, \ P_{Y|X}(y|x) = \exp(xy - \alpha(x) + \beta(y))$$

• $P_{Y|X}$ is a natural exponential family with quadratic variance function (introduced in [Morris, 1982]):

$$\forall x \in \mathcal{X}, \forall y \in \mathcal{Y}, \ P_{Y|X}(y|x) = \exp(xy - \alpha(x) + \beta(y))$$

where $P_{Y|X}(y|0) = \exp(\beta(y))$ is the base distribution, $\alpha(x)$ is the log-partition function with $\alpha(0) = 0$, and $\mathbb{VAR}(Y|X = x)$ is a quadratic function of $\mathbb{E}[Y|X = x]$.

- theoretical importance: efficient estimation, large deviation exponents
- useful properties: (infinite) divisibility, closure under convolutions

 P_{Y|X} is a natural exponential family with quadratic variance function (introduced in [Morris, 1982]):

$$\forall x \in \mathcal{X}, \forall y \in \mathcal{Y}, \ P_{Y|X}(y|x) = \exp(xy - \alpha(x) + \beta(y))$$

• P_X belongs to the corresponding conjugate prior family:

$$\forall x \in \mathcal{X}, \ P_X(x; y', n) = \exp\left(y'x - n\alpha(x) - \tau(y', n)\right)$$

where $\tau(y', n)$ is the *log-partition function*.

• "Eigen"-Property: useful in Bayesian inference since the posterior $P_{X|Y}(x|y) = P_X(x; y' + y, n + 1)$ is in the same family as the prior

 P_{Y|X} is a natural exponential family with quadratic variance function (introduced in [Morris, 1982]):

$$\forall x \in \mathcal{X}, \forall y \in \mathcal{Y}, \ P_{Y|X}(y|x) = \exp(xy - \alpha(x) + \beta(y))$$

• P_X belongs to the corresponding conjugate prior family:

$$\forall x \in \mathcal{X}, \ P_X(x; y', n) = \exp\left(y'x - n\alpha(x) - \tau(y', n)\right)$$

- There are only three such joint distribution families where all moments exist and are finite:
 - Gaussian likelihood with Gaussian prior,
 - Poisson likelihood with gamma prior,
 - binomial likelihood with beta prior.

Anuran Makur (MIT)

That's all Folks!

Anuran Makur (MIT)

メロト メポト メヨト メヨト

■ _ _ のへ (?)