Differential geometrical approach to covariance estimation

Antoni Musolas
Center for Computational Engineering Aerospace Computational Design Lab
Massachusetts Institute of Technology (MIT)
musolas@mit.edu

22 April 2016

Covariance estimation problem

- Broad problem: Given a parameterized family of covariances and some samples, what is the most representative member of the family?
- Goals of the presentation:
(1) Can we use a geodesic line between two symmetric positive definite matrices to define a covariance matrix family?
(2) Can we look at the problem of covariance estimation geometrically?

Geometry of the manifold of positive definite matrices

Let A_{1} and A_{2} belong to $S_{+}(n, n)$.

- There exists a distance that satisfies:

$$
\begin{gathered}
d\left(A_{1}, A_{2}\right)=d\left(A_{1}^{-1}, A_{2}^{-1}\right), \\
d\left(A_{1}, A_{2}\right)=d\left(Z A_{1} Z^{T}, Z A_{2} Z^{T}\right) .
\end{gathered}
$$

- Closed form expression for the distance:

$$
d\left(A_{1}, A_{2}\right)=\sqrt{\sum_{k=1}^{n} \log ^{2}\left(\lambda_{k}\right)}
$$

where λ_{k} are the generalized eigenvalues of $\left(A_{1}, A_{2}\right)$.

- A parametrization of the geodesic between A_{1} and A_{2} is given by:

$$
\varphi_{A_{1} \rightarrow A_{2}}(t)=A_{1}^{\frac{1}{2}} \exp _{m}\left(t \log _{m}\left(A_{1}^{-\frac{1}{2}} A_{2} A_{1}^{-\frac{1}{2}}\right)\right) A_{1}^{\frac{1}{2}}=A_{1}^{\frac{1}{2}} U \Lambda^{t} U^{T} A_{1}^{\frac{1}{2}},
$$

where $\varphi_{A_{1} \rightarrow A_{2}}(t) \in S_{+}(n, n)$ for all $t \in \mathbb{R}$, and $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)$.

Geodesic as covariance function

Definition (Covariance function)

A one-parameter covariance function is a one-parameter group $\varphi: \mathbb{R} \rightarrow S_{+}(n, n)$.

Lemma (Geodesic as covariance function)

Let A_{1} and A_{2} be two elements in $S_{+}(n, n)$. Then $\varphi_{A_{1} \rightarrow A_{2}}(t)$ is a one-parameter covariance function.

Two possible generalizations:
(1) Let A_{1} and A_{2} be two elements in $S_{+}(n, r)$ for $r<n$.
(2) Let φ to be $\varphi_{A_{1} \rightarrow A_{2}}: \mathbb{R}^{p} \rightarrow S_{+}(n, r)$, for p-variate covariance function.

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Geodesic as covariance function

- Idea: Interpolation of covariance matrices through a geodesic.
- Example: A log-permeability field $Y(x, \omega)$ is defined as a Gaussian process with mean $\mu_{Y}=1$ and covariance kernel.

$$
C(x, \bar{x})=\sigma_{Y}^{2} \exp \left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^{p}\right), \quad L=0.3, \sigma_{Y}^{2}=1, p=1
$$

Duality of the covariance estimation problem

- Let $y^{(1)}, \ldots, y^{(q)}$ be observations from an n-variate normal dist.
- Let \widehat{C} be a full rank sample covariance matrix of the $y^{(1)}, \ldots, y^{(q)}$.
- Consider two covariance matrices of interest, A and B, and $\varphi_{A \rightarrow B}(t)$.

Maximum likelihood approach to covariance estimation

$$
\begin{gathered}
\underset{t \in(-\infty, \infty)}{\operatorname{maximize}} p_{X}\left(y^{(1)}, \ldots, y^{(q)} \mid t\right) \\
\text { s.t. } X \sim N\left(0, \varphi_{A \rightarrow B}(t)\right)
\end{gathered}
$$

Minimization of distance approach to covariance estimation

$$
\begin{equation*}
\operatorname{minimize}_{t \in(-\infty, \infty)} d\left(\varphi_{A \rightarrow B}(t), \widehat{C}\right) \tag{2}
\end{equation*}
$$

Divergence measures as spectral functions

Definition (Spectral function)

Let A_{1} and A_{2} be two elements in $S_{+}(n, n)$. A function $f\left(\lambda^{\left(A_{1}, A_{2}\right)}\right)$ is a spectral function if it is a differentiable and symmetric map of the n generalized eigenvalues of $\left(A_{1}, A_{2}\right)$ to the reals.

- Examples of spectral functions

- Natural distance in $S_{+}(n, n)$:

$$
d\left(A_{1}, A_{2}\right)=\sqrt{\sum_{k=1}^{n} \log ^{2}\left(\lambda_{k}\right)}
$$

- Kullback-Leibler divergence for multivariate normal:

$$
D_{K L}\left(N\left(0, A_{1}\right) \| N\left(0, A_{2}\right)\right)=\sum_{k=1}^{n}\left(\lambda_{k}+\log ^{2}\left(\lambda_{k}\right)+1\right) / 2
$$

- Hellinger distance for multivariate normal:

$$
d_{\text {Hell }}\left(N\left(0, A_{1}\right), N\left(0, A_{2}\right)\right)=1-2^{1 / 2} \prod_{k=1}^{n} \lambda_{k}^{1 / 4}\left(1+\lambda_{k}\right)^{-1 / 2}
$$

Minimizing an spectral function

Lemma (Spectral function minimization)

Let f be a spectral function, then:

- Minimizing $f\left(\lambda^{\left(\varphi_{A \rightarrow B}(t), \widehat{C}\right)}\right)$ over t is equivalent to finding t^{+}such that:

$$
\operatorname{Tr}\left(V\left(t^{+}\right)\left(\left.\frac{\delta f(\Sigma(t))}{\delta t}\right|_{t^{+}}\right) V\left(t^{+}\right)^{T} M \wedge^{t^{+}} \log \Lambda M^{T}\right)=0
$$

- Notation:
- $X(t)=\widehat{C}^{-\frac{1}{2}} A_{1}^{\frac{1}{2}} U \Lambda^{t} U^{T} A_{1}^{\frac{1}{2}} \widehat{C}^{-\frac{1}{2}}$,
- $X(t)=V(t) \Sigma(t) V(t)^{T}$, a proper eigenvalue decomposition,
- $M=\widehat{C}^{-\frac{1}{2}} A^{\frac{1}{2}} U$.

Properties of the proposed optimization problems (I/II)

Lemma (Uniqueness of the solution)

The aforementioned problems are respectively concave and convex, thus:
(1) There exists a unique \hat{t} that maximizes the likelihood $p_{X}\left(y^{(1)}, \ldots, y^{(q)} \mid t\right)$.
(2) There exists a unique t^{*} that minimizes the distance $d\left(\varphi_{A \rightarrow B}(t), \widehat{C}\right)$.

Properties of the proposed optimization problems (II/II)

Lemma (Idempotence of the projection)

If $\hat{C} \in \varphi_{A \rightarrow B}(t)$, then:
(1) There exists a unique \bar{t} such that either (i) $\left(\lambda_{k}^{(A, B)}\right)^{\bar{t}}=\lambda_{k}^{(A, \widehat{C})}$, or (ii) $\left(\lambda_{k}^{(B, A)}\right)^{\bar{t}}=\lambda_{k}^{(B, \widehat{C})}$, for all $k=1,2 \ldots n$.
(2) Moreover, $\bar{t}=t^{*}=\hat{t}$ and $\widehat{C}=\varphi_{A \rightarrow B}(\bar{t})$.

Solution to the minimization problem

Result 1 (Differential geometrical solution of covariance estimation)

(1) If $\widehat{C} \in \varphi_{A \rightarrow B}(t)$, then:

$$
t^{*}=\frac{\sum_{k=1}^{n} \log \left(\lambda_{k}^{\widehat{C}}\right)-\sum_{k=1}^{n} \log \left(\lambda_{k}^{A}\right)}{\sum_{k=1}^{n} \log \left(\lambda_{k}^{B}\right)-\sum_{k=1}^{n} \log \left(\lambda_{k}^{A}\right)},
$$

solves the minimization problem, where $\lambda_{k}^{A}, \lambda_{k}^{B}$, and $\lambda_{k}^{\widehat{C}}$, are the k-th eigenvalues of A, B, and \widehat{C}, respectively.
(2) This expression also holds when $A=\alpha B$, for any positive real α.
(3) Otherwise, t^{*} is the solution of:

$$
\operatorname{Tr}\left(\log _{m}\left(\Lambda^{t^{*}} \widehat{C}^{-\frac{1}{2}} A \widehat{C}^{-\frac{1}{2}}\right) \log _{m}(\Lambda)\right)=0
$$

(9) In all cases, the solution is unique.
(5) The aforementioned t^{*} minimizes the Fisher information metric if data assumed to be normally distributed with known mean.

Solution to the maximization problem

Result 2 (Maximum likelihood solution of covariance estimation)

(1) Refer to the preceding. If $\widehat{C} \in \varphi_{A \rightarrow B}(t)$, then the solution in Result 1 continues to hold and $\hat{t}=t^{*}$.
(2) Otherwise, \hat{t} is the solution of:

$$
\operatorname{Tr}\left(\widehat{C} A^{-\frac{1}{2}} U \Lambda^{-\hat{t}} \log _{m}(\Lambda) U^{T} A^{-\frac{1}{2}}-\log _{m}(\Lambda)\right)=0
$$

(3) In all cases, the solution is unique.
(9) The aforementioned \hat{t} minimizes the Kullback-Leibler divergence if data assumed to be normally distributed with known mean.

Results in a toy problem

- Illustration of the cost functions in the maximization and minimization problems in a toy example:

Results in a toy problem

- Illustration of the cost functions in the maximization and minimization problems in a toy example:

Pros and cons of our approach

- Advantages of using geodesic as covariance function
- Possibility to use empirical covariance matrices to define richer parametric families of covariance functions.
- Covariances offer more flexibility for problem-specific tailoring than classical parametric families of covariance kernels.
- Works properly as a non-stationary covariance kernel.
- Advantages of minimizing distance vs maximizing likelihood
- Do not require to specify a distribution for the data.
- Minimizing distance is the natural way in differential geometry.
- It also minimizes Fisher information metric, which is an intrinsic property in inference.
- Disadvantages
- Impossibility to recover the covariance generating kernel.
- The covariance matrix must be full rank.
- We require prior knowledge of the problem.

Conclusions and limitations

- Contributions
- Devised a covariance function that follows naturally from the data.
- Proposed a differential geometrical approach to covariance estimation.
- Limitations
- Computational cost is of the same order than maximizing the likelihood.
- Our covariance function is already discretized, as opposed to the classic covariance kernels.
- Further research
- Devise a multi-variate covariance function.
- Generalize for low rank covariance matrices.
- Compute error bounds.

