# Differential geometrical approach to covariance estimation

Antoni Musolas

Center for Computational Engineering Aerospace Computational Design Lab

Massachusetts Institute of Technology (MIT) musolas@mit.edu

22 April 2016

## **Covariance estimation problem**

- Broad problem: Given a parameterized family of covariances and some samples, what is the most representative member of the family?
- Goals of the presentation:
  - Can we use a geodesic line between two symmetric positive definite matrices to define a covariance matrix family?
  - 2 Can we look at the problem of covariance estimation geometrically?



## Geometry of the manifold of positive definite matrices

Let  $A_1$  and  $A_2$  belong to  $S_+(n, n)$ .

There exists a distance that satisfies:

$$d(A_1, A_2) = d(A_1^{-1}, A_2^{-1}),$$
  
 $d(A_1, A_2) = d(ZA_1Z^T, ZA_2Z^T).$ 

Closed form expression for the distance:

$$d(A_1,A_2) = \sqrt{\sum_{k=1}^n \log^2(\lambda_k)},$$

where  $\lambda_k$  are the generalized eigenvalues of  $(A_1, A_2)$ .

• A parametrization of the geodesic between  $A_1$  and  $A_2$  is given by:

$$\varphi_{A_1 \to A_2}(t) = A_1^{\frac{1}{2}} \exp_m(t \log_m(A_1^{-\frac{1}{2}} A_2 A_1^{-\frac{1}{2}})) A_1^{\frac{1}{2}} = A_1^{\frac{1}{2}} U \Lambda^t U^T A_1^{\frac{1}{2}},$$

where  $\varphi_{A_1 \to A_2}(t) \in S_+(n, n)$  for all  $t \in \mathbb{R}$ , and  $\Lambda = diag(\lambda_k)$ .

# Definition (Covariance function)

A one-parameter covariance function is a one-parameter group  $\varphi \colon \mathbb{R} \to S_+(n, n).$ 

## Lemma (Geodesic as covariance function)

Let  $A_1$  and  $A_2$  be two elements in  $S_+(n, n)$ . Then  $\varphi_{A_1 \to A_2}(t)$  is a one-parameter covariance function.

#### Two possible generalizations:

- Let  $A_1$  and  $A_2$  be two elements in  $S_+(n, r)$  for r < n.
- 2 Let  $\varphi$  to be  $\varphi_{A_1 \to A_2} \colon \mathbb{R}^p \to S_+(n, r)$ , for *p*-variate covariance function.

- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



A. Musolas (MIT)

- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



- ▶ Idea: Interpolation of covariance matrices through a geodesic.
- **Example:** A log-permeability field  $Y(x, \omega)$  is defined as a Gaussian process with mean  $\mu_Y = 1$  and covariance kernel.

$$C(x,\bar{x}) = \sigma_Y^2 \exp\left(-\frac{1}{p}\left(\frac{|x-\bar{x}|}{L}\right)^p\right), \qquad L = 0.3, \ \sigma_Y^2 = 1, \ p = 1$$



## Duality of the covariance estimation problem

- Let  $y^{(1)}, \ldots, y^{(q)}$  be observations from an *n*-variate normal dist.
- Let  $\widehat{C}$  be a full rank sample covariance matrix of the  $y^{(1)}, \ldots, y^{(q)}$ .
- Consider two covariance matrices of interest, A and B, and  $\varphi_{A \to B}(t)$ .

#### Maximum likelihood approach to covariance estimation

$$\underset{t \in (-\infty,\infty)}{\text{maximize}} p_X(y^{(1)}, \dots, y^{(q)}|t)$$
 (1)

s.t. 
$$X \sim N(0, \varphi_{A \rightarrow B}(t))$$

# Minimization of distance approach to covariance estimation

$$\min_{t \in (-\infty,\infty)} d(\varphi_{A \to B}(t), \widehat{C})$$
(2)

## Definition (Spectral function)

Let  $A_1$  and  $A_2$  be two elements in  $S_+(n, n)$ . A function  $f(\lambda^{(A_1, A_2)})$  is a spectral function if it is a differentiable and symmetric map of the n generalized eigenvalues of  $(A_1, A_2)$  to the reals.

- Examples of spectral functions
  - Natural distance in  $S_+(n, n)$ :

$$d(A_1, A_2) = \sqrt{\sum_{k=1}^n \log^2(\lambda_k)}.$$

Kullback-Leibler divergence for multivariate normal:

$$D_{KL}(N(0,A_1)||N(0,A_2)) = \sum_{k=1}^n (\lambda_k + \log^2(\lambda_k) + 1)/2.$$

Hellinger distance for multivariate normal:

$$d_{Hell}(N(0,A_1),N(0,A_2)) = 1 - 2^{l/2} \prod_{k=1}^n \lambda_k^{1/4} (1+\lambda_k)^{-1/2}.$$

# Lemma (Spectral function minimization)

Let f be a spectral function, then:

• Minimizing  $f(\lambda^{(\varphi_{A \to B}(t), \widehat{C})})$  over t is equivalent to finding  $t^+$  such that:

$$Tr(V(t^+)\left(\frac{\delta f(\Sigma(t))}{\delta t}\Big|_{t^+}\right)V(t^+)^T M \Lambda^{t^+} \log \Lambda M^T) = 0.$$

Notation:

• 
$$X(t) = \widehat{C}^{-\frac{1}{2}} A_1^{\frac{1}{2}} U \Lambda^t U^T A_1^{\frac{1}{2}} \widehat{C}^{-\frac{1}{2}}$$
,

•  $X(t) = V(t)\Sigma(t)V(t)^{T}$ , a proper eigenvalue decomposition,

• 
$$M = \widehat{C}^{-\frac{1}{2}} A^{\frac{1}{2}} U.$$

# Lemma (Uniqueness of the solution)

The aforementioned problems are respectively concave and convex, thus: There exists a unique  $\hat{t}$  that maximizes the likelihood  $p_X(y^{(1)}, \dots, y^{(q)}|t)$ . There exists a unique  $t^*$  that minimizes the distance  $d(\varphi_{A \to B}(t), \hat{C})$ .



# Properties of the proposed optimization problems (II/II)

Lemma (Idempotence of the projection)

If  $\widehat{C} \in \varphi_{A \to B}(t)$ , then:

• There exists a unique  $\overline{t}$  such that either (i)  $(\lambda_k^{(A,B)})^{\overline{t}} = \lambda_k^{(A,\widehat{C})}$ , or (ii)  $(\lambda_k^{(B,A)})^{\overline{t}} = \lambda_k^{(B,\widehat{C})}$ , for all k = 1, 2...n.

2 Moreover,  $\overline{t} = t^* = \hat{t}$  and  $\widehat{C} = \varphi_{A \to B}(\overline{t})$ .



# Result 1 (Differential geometrical solution of covariance estimation)

• If  $\widehat{C} \in \varphi_{A \to B}(t)$ , then:

$$t^* = \frac{\sum_{k=1}^n \log(\lambda_k^{\widehat{C}}) - \sum_{k=1}^n \log(\lambda_k^{A})}{\sum_{k=1}^n \log(\lambda_k^{B}) - \sum_{k=1}^n \log(\lambda_k^{A})},$$

solves the minimization problem, where  $\lambda_k^A$ ,  $\lambda_k^B$ , and  $\lambda_k^{\widehat{C}}$ , are the *k*-th eigenvalues of *A*, *B*, and  $\widehat{C}$ , respectively.

**2** This expression also holds when  $A = \alpha B$ , for any positive real  $\alpha$ .

3 Otherwise, *t*\* is the solution of:

$$Tr(\log_m(\Lambda^{t^*}\widehat{C}^{-\frac{1}{2}}A\widehat{C}^{-\frac{1}{2}})\log_m(\Lambda))=0.$$

- In all cases, the solution is unique.
- The aforementioned t\* minimizes the Fisher information metric if data assumed to be normally distributed with known mean.

## Result 2 (Maximum likelihood solution of covariance estimation)

- Refer to the preceding. If  $\widehat{C} \in \varphi_{A \to B}(t)$ , then the solution in Result 1 continues to hold and  $\widehat{t} = t^*$ .
- **2** Otherwise,  $\hat{t}$  is the solution of:

$$Tr(\widehat{C}A^{-\frac{1}{2}}U\Lambda^{-\hat{t}}\log_m(\Lambda)U^TA^{-\frac{1}{2}}-\log_m(\Lambda))=0.$$

- In all cases, the solution is unique.
- The aforementioned t minimizes the Kullback-Leibler divergence if data assumed to be normally distributed with known mean.

## Results in a toy problem

Illustration of the cost functions in the maximization and minimization problems in a toy example:



Illustration of the cost functions in the maximization and minimization problems in a toy example:



## Pros and cons of our approach

#### Advantages of using geodesic as covariance function

- Possibility to use empirical covariance matrices to define richer parametric families of covariance functions.
- Covariances offer more flexibility for problem-specific tailoring than classical parametric families of covariance kernels.
- Works properly as a non-stationary covariance kernel.

#### Advantages of minimizing distance vs maximizing likelihood

- Do not require to specify a distribution for the data.
- Minimizing distance is the natural way in differential geometry.
- It also minimizes Fisher information metric, which is an intrinsic property in inference.

#### Disadvantages

- Impossibility to recover the covariance generating kernel.
- The covariance matrix must be full rank.
- We require prior knowledge of the problem.

## Contributions

- Devised a covariance function that follows naturally from the data.
- Proposed a differential geometrical approach to covariance estimation.

## Limitations

- Computational cost is of the same order than maximizing the likelihood.
- Our covariance function is already discretized, as opposed to the classic covariance kernels.

#### Further research

- Devise a multi-variate covariance function.
- Generalize for low rank covariance matrices.
- Compute error bounds.