RMT and boson computers [Aaronson-Arkhipov 2011]

John Napp

May 11, 2016

Introduction

- Simple type of quantum computer proposed in 2011 by Aaronson and Arkhipov based on the statistics of noninteracting bosons
- The computer A outputs a sample from a probability distribution D_A
- They prove that if there exists a classical algorithm that can efficiently output a sample from a distribution close to D_A, then P^{#P} = BPP^{NP}: a drastic consequence for complexity theory!
- Among the strongest evidence to date that quantum computers have capabilities beyond classical computers.
- Proof relies on random matrix techniques, and requires two unproven RMT conjectures

Complexity Preliminaries

► Definition (#P)

A function $f : \{0, 1\}^* \to \mathbb{N}$ is in #P if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM *M* such that for every $x \in \{0, 1\}^*$:

$$f(x) = \left| \left\{ y \in \{0, 1\}^{p(|x|)} : M(x, y) = 1 \right\} \right|$$

Theorem (Valiant)

The following problem is #P-complete: given a matrix $X \in \{0, 1\}^{n \times n}$, compute Per(X).

Theorem (Aaronson-Arkhipov)

The following problem is #P-hard, for any $g \in [1, poly(n)]$: given a matrix $X \in \mathbb{R}^{n \times n}$, approximate $Per(X)^2$ to within a multiplicative factor of g.

Complexity Preliminaries (2)

- BPP: class of languages efficiently decided with high probability by a probabilistic TM
- BPP^{NP} machine: a BPP machine that can also solve NP-complete problems in a single step
- P^{#P} machine: a P machine that can compute #P-complete functions in a single step
- Stockmeyer: a BPP^{NP} machine can efficiently estimate the acceptance probability of a BPP machine
- ▶ Widely believed that $BPP^{NP} \subsetneq P^{\#P}$ (can only prove $BPP^{NP} \subseteq P^{\#P}$)

Preview: Gaussian Permanent Estimation problems

|GPE|²_±: Given as input a matrix X ~ N(0,1)^{n×n}_C of iid Gaussians, together with error bounds ε, δ > 0, estimate |Per(X)|² to within additive error ±ε · n!, with probability at least 1 − δ over X, in *poly*(n, 1/ε, 1/δ) time.

GPE_×: Given as input a matrix X ~ N(0, 1)^{n×n}_C of iid Gaussians, together with error bounds ε, δ > 0, estimate Per(X) to within ±ε · |Per(X)|, with probability at least 1 − δ over X, in poly(n, 1/ε, 1/δ) time.

Preview: RMT conjectures

- Permanent-of-Gaussians Conjecture (PGC): GPE_× is #P-hard.
- Permanent Anti-Concentration Conjecture (PACC): There exists a polynomial *p* such that for all *n* and δ > 0,

$$\Pr_{X \sim \mathcal{N}(0,1)_{\mathbb{C}}^{n \times n}} \left[|\operatorname{Per}(X)| < \frac{\sqrt{n!}}{p(n,1/\delta)} \right] < \delta$$

► Theorem: if PACC is true, then GPE_× and |GPE|²_± are equivalent

BosonSampling

- ▶ *n* photons sent through linear optical network. Can end up in *m* possible photodetectors, for *m* ≥ *n*.
- ► Description of network encoded by *m* × *n* column-orthonormal complex matrix *A* ∈ U_{m,n}
- Output of computer: measurement of how many photons end up in each photodetector.
 - $S \in \Phi_{m,n}$, where $\Phi_{m,n}$ is the set of tuples (s_1, \ldots, s_m) s.t. $s_i \ge 0$ and $\sum s_i = n$

By quantum mechanics, output distribution of computer is

$$\Pr_{\mathcal{D}_{\mathcal{A}}}[S] = \frac{|\operatorname{Per}(\mathcal{A}_{\mathcal{S}})|^2}{s_1! \cdots s_m!}$$

where A_S is $n \times n$ matrix constructed by keeping s_i copies of row *i* of *A*

Exact BosonSampling $\implies P^{\#P} = BPP^{NP}$

- Assume ∃ a classical algorithm O(A, r) for A ∈ U_{m,n} and r a string s.t. the distribution of O over r is D_A.
- Then with BPP^{NP} machine, we can compute the squared permanent of an arbitrary real matrix X: a #P-hard problem!
 - ► Embed scaled X as a submatrix of A ∈ U_{m,n} (can prove this is possible)
 - Now a certain output probability is proportional to the squared permanent of X (exponentially small due to scaling during the embedding)
 - Use Stockmeyer result to compute this probability with a BPP^{NP} machine
- ► $P^{\#P} = BPP^{NP}$

The problem with the above result

- ► The classical algorithm O used above was assumed to sample exactly from D_A.
- Not physically reasonable due to noise, even a boson computer can't sample exactly from D_A!
- ► To be reasonable, let *O* sample from some distribution *D'*_A s.t. ||*D'*_A *D*_A|| < ε in variation distance.</p>
- But this ruins the above result! If O were adversarial and knew where we embedded X in A, it could concentrate its error on the probability corresponding to the permanent of X, and so a BPP^{NP} machine would no longer be able to use O to estimate the squared permanent.
- Solution: "smuggle" X into A with the help of RMT, so O has no way of detecting where the embedded X is in A.

Haar-Unitary Hiding Theorem

- ► H_{m,n}: Haar measure over m × n column-orthonormal matrices
- S_{m,n}: Distribution obtained by drawing U ∼ H_{m,m}, and outputting √mU_{n,n}
- G^{n×n}: Distribution of complex n × n matrices with iid standard complex Gaussian entries

Theorem Let $m \geq \frac{n^5}{\delta} \log^2 \frac{n}{\delta}$, for any $\delta > 0$. Then $\|S_{m,n} - \mathcal{G}^{n \times n}\| = O(\delta)$.

► m^{1/6} × m^{1/6} truncations of m × m unitaries look like iid Gaussians

Hiding Lemma

Lemma

Let $m \geq \frac{n^5}{\delta} \log^2 \frac{n}{\delta}$ for some $\delta > 0$. Then there exists a BPP^{NP} algorithm \mathcal{A} that takes as input a matrix $X \sim \mathcal{G}^{n \times n}$, that "succeeds" with probability $1 - O(\delta)$ over X, and that, conditioned on succeeding, samples a matrix $A \in \mathcal{U}_{m,n}$ from a probability distribution \mathcal{D}_X , such that the following properties hold:

- i) X/\sqrt{m} occurs as a uniformly-random $n \times n$ submatrix of $A \sim D_X$, for every X such that $\Pr[\mathcal{A}(X) \text{ succeeds}] > 0$.
- ii) The distribution over A ∈ C^{m×n} induced by drawing X ~ G^{n×n}, running A(X), and conditioning on A(X) succeeding is simply H_{m,n}.

Hiding Lemma - proof strategy

- Sample $X \sim \mathcal{G}^{n \times n}$
- ► Using rejection sampling and the previous theorem, with high probability turn X into a sample from S_{m,n}
- ► Define D_X as sampling from H_{m,n}, conditioned on X appearing as a submatrix (up to scaling).
- Complexity theory: BPP^{NP} machine can produce sample from D_X
- ▶ By symmetry, distribution of outputs is *H*_{*m*,*n*}

Approximate BosonSampling

- Assuming ∃ approximate classical sampler O, want to prove |GPE|²_± ∈ BPP^{NP}
- Generate sample $X \sim \mathcal{G}^{n \times n}$
- With high probability, use the Hiding Lemma to smuggle X into a matrix A ∈ U_{m,n}
- ► With X smuggled into A, we can compute the squared permanent of X with BPP^{NP} machine as before, up to ± error
- Since A ~ ℋ_{m,n} and X ~ 𝔅_{m,n}, adversarial 𝔅 can't corrupt: no way of knowing where the smuggled X is!
- ► Assuming RMT conjectures, |GPE|²_± is #P-hard problem, hence P^{#P} = BPP^{NP} as desired.

Permanent of Gaussians Conjecture

PGC: GPE_{\times} is #P-hard.

- Plausible for complexity-theoretic reasons
- ► Analogous result is true for finite fields. Just need to generalize to C

Permanent Anti-Concentration Conjecture

PACC: There exists a polynomial *p* such that for all *n* and $\delta > 0$,

$$\Pr_{X \sim \mathcal{N}(0,1)_{\mathbb{C}}^{n \times n}} \left[|\mathsf{Per}(X)| < \frac{\sqrt{n!}}{p(n,1/\delta)} \right] < \delta$$

- Standard deviation of Per(X) is $\sqrt{n!}$.
- PACC: probability mass of Per(X) does not concentrate at very small values relative to σ

Some PACC Evidence

▶ Tao-Vu (2009): For all ε > 0 and sufficiently large *n*,

$$\Pr_{X \in \{-1,1\}^{n \times n}} \left[|\operatorname{Per}(X)| < \frac{\sqrt{n!}}{n^{\varepsilon n}} \right] < \frac{1}{n^{0.1}}$$

Aaronson-Arkhipov (Weak PACC): For all $\alpha < 1$,

$$\Pr_{X \sim \mathcal{G}^{n \times n}} \left[|\operatorname{\mathsf{Per}}(X)|^2 \geq \alpha \cdot n! \right] > \frac{(1-\alpha)^2}{n+1}.$$

- Conjecture is proven for determinant instead of permanent
- Supported by numerics

Figure 1: Distribution of |Per(X)| for $X \sim \mathcal{G}^{7 \times 7}$. 10,000 samples were taken. Note that $\sqrt{7!} \approx 71$.