Random Matrix Contiguity

Alex Wein

May 11, 2016

1 Introduction

In the "spike model" for random matrices, it is well known that the top eigenvalue of a GOE matrix is affected by a planted 'spike' if and only if the size of the spike exceeds a certain threshold. This leaves open the question of what happens when the spike is below the threshold - is there another way (other than the top eigenvalue) to detect the spike (e.g. by looking at other eigenvalues or gaps between eigenvalues)? In this report I will give a simple proof that it is in fact statistically impossible to detect the spike below the threshold. This is based on joint research with Will Perry.

2 Spike Model

A "spiked Wigner matrix" takes the form $Y=\lambda x x^{\top}+\frac{1}{\sqrt{n}} W$ where x is a unit vector in \mathbb{R}^{n} and W is an $n \times n$ GOE matrix (normalized such that the off-diagonals have variance 1). Here λ is a parameter that controls the size of the spike. It is known that the top eigenvalue undergoes a phase transition at the critical value $\lambda=1$, namely:

Theorem 2.1 ([FP06]). Let $Y=\lambda x x^{\top}+\frac{1}{\sqrt{n}} W$ as above.

- If $\lambda \leq 1$ then $\lambda_{\max }(Y) \rightarrow 2$ as $n \rightarrow \infty$,
- and if $\lambda>1$ then $\lambda_{\max }(Y) \rightarrow \lambda+\frac{1}{\lambda}>2$ as $n \rightarrow \infty$.

Recall that $\lambda_{\max }\left(\frac{1}{\sqrt{n}} W\right) \rightarrow 2$, so this means that the spike affects the top eigenvalue if and only if $\lambda>1$. Our main result will show that when $\lambda<1$, it is statistically impossible to detect the spike. (For simplicity we do not consider the boundary case $\lambda=1$.)

3 Contiguity

The proof of our main result will rely on the notion of contiguity (see [Jan95]), which was introduced by Le Cam as the asymptotic analogue of absolute continuity. We consider two sequences of probability measures $\left\{\mathbb{P}_{n}\right\}$ and $\left\{\mathbb{Q}_{n}\right\}$ such that for each n, \mathbb{P}_{n} and \mathbb{Q}_{n} are defined on the same probability space. In our case, we will be interested in the following two distributions over $n \times n$ matrices Y_{n} :

- $\mathbb{P}_{n}: Y_{n}=\lambda x x^{\top}+\frac{1}{\sqrt{n}} W$ where $x \sim \mathcal{D}_{n}$
- $\mathbb{Q}_{n}: Y_{n}=\frac{1}{\sqrt{n}} W$.

In other words: under \mathbb{P}_{n}, Y_{n} is a spiked Wigner matrix where the spike is drawn from some prior \mathcal{D}_{n}; and under \mathbb{Q}_{n}, Y_{n} is just an (un-spiked) Wigner matrix. We will take \mathcal{D}_{n} to be the uniform prior over unit vectors in \mathbb{R}^{n}, but our techniques also extend to other priors (e.g. vectors with entries $\{ \pm 1\}$). Now we are ready to define contiguity.

Definition 3.1. We say $\left\{\mathbb{P}_{n}\right\}$ is contiguous to $\left\{\mathbb{Q}_{n}\right\}$ if whenever $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ for a sequence of events $\left\{A_{n}\right\}$, we also have $\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$. We denote this by $\mathbb{P}_{n} \triangleleft \mathbb{Q}_{n}$.

Our main result shows contiguity for the specific $\left\{\mathbb{P}_{n}\right\},\left\{\mathbb{Q}_{n}\right\}$ defined above.
Theorem 3.2 (main). For $\left\{\mathbb{P}_{n}\right\}$ and $\left\{\mathbb{Q}_{n}\right\}$ defined above (spiked Wigner matrices), if $\lambda<1$ then we have $\mathbb{P}_{n} \triangleleft \mathbb{Q}_{n}$.

The reason we are interested in contiguity is because of its implications for non-distinguishability of the two distributions in the following sense. Suppose we generate a random value Y_{n} as follows: with probability $\frac{1}{2}, Y_{n}$ is sampled from \mathbb{P}_{n}, and with probability $\frac{1}{2}, Y_{n}$ is sampled from \mathbb{Q}_{n}. Also suppose we have a "distinguisher" \mathcal{A}_{n} that takes Y_{n} and tries to guess which of the two distributions it came from. An immediate consequence of contiguity is that if $\mathbb{P}_{n} \triangleleft \mathbb{Q}_{n}$ then there is no distinguisher \mathcal{A}_{n} that guesses correctly with probability $1-o(1)$ as $n \rightarrow \infty$. To prove this, consider the event A_{n} that \mathcal{A}_{n} guesses " \mathbb{P}_{n} ". If the distinguisher succeeds with probability $1-o(1)$ then we must have $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0$ (i.e. if Y_{n} comes from \mathbb{Q}_{n} then \mathcal{A}_{n} should not guess " \mathbb{P}_{n} "). But by contiguity this implies $\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$, which is a contradiction. This gives the following corollary.

Corollary 3.3. For $\left\{\mathbb{P}_{n}\right\}$ and $\left\{\mathbb{Q}_{n}\right\}$ defined above (spiked Wigner matrices), if $\lambda<1$ then no distinguisher succeeds with probability $1-o(1)$ as $n \rightarrow \infty$.

In other words, there is no test that can reliably detect the presence of the spike (when $\lambda<1$). Note that this only rules out distinguishers that succeed with high probability $1-o(1)$. There could still be a distinguisher that succeeds with, say, some constant probability larger than $\frac{1}{2}$.

4 Proof of Main Result

In this section we prove our main result (Theorem 3.2): if $\lambda<1$ then $\mathbb{P}_{n} \triangleleft \mathbb{Q}_{n}$. A related result can be found in [KXZ16]. One advantage of our proof is that it is very simple.

We start with a crucial lemma that gives us a concrete way to prove contiguity: if we can show that a particular second moment is finite, then contiguity follows.

Lemma 4.1. Let $\left\{\mathbb{P}_{n}\right\}$ and $\left\{\mathbb{Q}_{n}\right\}$ be two sequences of probability measures. If the second moment

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left[\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2}\right]
$$

remains bounded as $n \rightarrow \infty$ then $\mathbb{P}_{n} \triangleleft \mathbb{Q}_{n}$.
In our case, where \mathbb{P}_{n} and \mathbb{Q}_{n} are continuous distributions supported everywhere, say with densities p_{n} and q_{n}, the second moment is just $\mathbb{E}_{Y \sim \mathbb{Q}_{n}}\left[\left(\frac{p_{n}(Y)}{q_{n}(Y)}\right)^{2}\right]$.
Proof. Let $\left\{A_{n}\right\}$ be a sequence of events such that $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Using Cauchy-Schwarz,

$$
\begin{aligned}
\mathbb{P}_{n}\left(A_{n}\right) & =\int_{A_{n}} d \mathbb{P}_{n}=\int_{A_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right) d \mathbb{Q}_{n} \leq \sqrt{\int_{A_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} d \mathbb{Q}} \cdot \sqrt{\int_{A_{n}} d \mathbb{Q}_{n}} \\
& \leq \sqrt{\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2}} \cdot \sqrt{\mathbb{Q}_{n}\left(A_{n}\right)} .
\end{aligned}
$$

The first factor is bounded and the second goes to 0 , so $\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$.

4.1 Proof of Theorem 3.2

We can now prove our main theorem by computing the second moment $\mathbb{E}_{\mathbb{Q}_{n}}\left[\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2}\right]$ for our particular choice of \mathbb{P}_{n} and \mathbb{Q}_{n} (spiked Wigner matrices).

$$
\begin{aligned}
& \frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}=\frac{\mathbb{E}_{x \sim \mathcal{D}_{n}} \exp \left(-\frac{n}{2} \sum_{i<j}\left(Y_{i j}-\lambda x_{i} x_{j}\right)^{2}-\frac{n}{4} \sum_{i}\left(Y_{i i}-\lambda x_{i}^{2}\right)^{2}\right)}{\exp \left(-\frac{n}{2} \sum_{i<j} Y_{i j}^{2}-\frac{n}{4} \sum_{i} Y_{i i}^{2}\right)} \\
&=\mathbb{E}_{x \sim \mathcal{D}_{n}} \exp \left(n \sum_{i<j} \lambda Y_{i j} x_{i} x_{j}-\frac{n}{2} \sum_{i<j} \lambda^{2} x_{i}^{2} x_{j}^{2}+\frac{n}{2} \sum_{i} \lambda Y_{i i} x_{i}^{2}-\frac{n}{4} \sum_{i} \lambda^{2} x_{i}^{4}\right) \\
&=\mathbb{E}_{x \sim \mathcal{D}_{n}} \exp \left(n \sum_{i<j} \lambda Y_{i j} x_{i} x_{j}+\frac{n}{2} \sum_{i} \lambda Y_{i i} x_{i}^{2}-\frac{n}{4} \sum_{i, j} \lambda^{2} x_{i}^{2} x_{j}^{2}\right) \\
&=\mathbb{E}_{x \sim \mathcal{D}_{n}} \exp \left(n \sum_{i<j} \lambda Y_{i j} x_{i} x_{j}+\frac{n}{2} \sum_{i} \lambda Y_{i i} x_{i}^{2}-\frac{n}{4} \lambda^{2}\right) \operatorname{since}\|x\|=1 \\
&\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2}=\exp \left(-\frac{n \lambda^{2}}{2}\right) \mathbb{E}_{x, x^{\prime} \sim \mathcal{D}_{n}} \exp \left(n \sum_{i<j} \lambda Y_{i j} x_{i} x_{j}+\frac{n}{2} \sum_{i} \lambda Y_{i i} x_{i}^{2}+n \sum_{i<j} \lambda Y_{i j} x_{i}^{\prime} x_{j}^{\prime}+\frac{n}{2} \sum_{i} \lambda Y_{i i}\left(x_{i}^{\prime}\right)^{2}\right)
\end{aligned}
$$

where x, x^{\prime} are drawn independently from \mathcal{D}_{n}.

$$
\mathbb{E}_{Y \sim \mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2}=\exp \left(-\frac{n \lambda^{2}}{2}\right) \mathbb{E}_{x, x^{\prime} \sim \mathcal{D}_{n}} \mathbb{E}_{Y \sim \mathbb{Q}_{n}} \exp \left(n \sum_{i<j} \lambda Y_{i j}\left(x_{i} x_{j}+x_{i}^{\prime} x_{j}^{\prime}\right)+\frac{n}{2} \sum_{i} \lambda Y_{i i}\left(x_{i}^{2}+\left(x_{i}^{\prime}\right)^{2}\right)\right)
$$

use the Gaussian moment-generating function:

$$
\begin{aligned}
& =\exp \left(-\frac{n \lambda^{2}}{2}\right) \mathbb{E}_{x, x^{\prime} \sim \mathcal{D}_{n}} \exp \left(\sum_{i<j} \frac{n \lambda^{2}}{2}\left(x_{i} x_{j}+x_{i}^{\prime} x_{j}^{\prime}\right)^{2}+\sum_{i} \frac{n \lambda^{2}}{4}\left(x_{i}^{2}+\left(x_{i}^{\prime}\right)^{2}\right)^{2}\right) \\
& =\exp \left(-\frac{n \lambda^{2}}{2}\right) \mathbb{E}_{x, x^{\prime} \sim \mathcal{D}_{n}} \exp \left(\frac{n \lambda^{2}}{4} \sum_{i, j}\left(x_{i} x_{j}+x_{i}^{\prime} x_{j}^{\prime}\right)^{2}\right) \\
& =\exp \left(-\frac{n \lambda^{2}}{2}\right) \mathbb{E}_{x, x^{\prime} \sim \mathcal{D}_{n}} \exp \left(\frac{n \lambda^{2}}{4} \sum_{i, j}\left(x_{i}^{2} x_{j}^{2}+2 x_{i} x_{i}^{\prime} x_{j} x_{j}^{\prime}+\left(x_{i}^{\prime}\right)^{2}\left(x_{j}^{\prime}\right)^{2}\right)\right) \\
& =\exp \left(-\frac{n \lambda^{2}}{2}\right) \mathbb{E}_{x, x^{\prime} \sim \mathcal{D}_{n}} \exp \left(\frac{n \lambda^{2}}{2}\left(1+\left\langle x, x^{\prime}\right\rangle^{2}\right)\right) \quad \text { since }\|x\|=1 \\
& =\mathbb{E}_{x, x^{\prime} \sim \mathcal{D}_{n}} \exp \left(\frac{n \lambda^{2}}{2}\left\langle x, x^{\prime}\right\rangle^{2}\right) \\
& =\mathbb{E}_{x \sim \mathcal{D}_{n}} \exp \left(\frac{n \lambda^{2}}{2}\left\langle x, e_{1}\right\rangle^{2}\right) \quad \text { by symmetry }\left(\text { here } e_{1}=(1,0,0, \ldots)\right)
\end{aligned}
$$

For large n, the distribution of $\left\langle x, e_{1}\right\rangle$ approaches $\mathcal{N}(0,1 / n)$ and so the distribution of $\left\langle x, e_{1}\right\rangle^{2}$ approaches $\frac{1}{n} \chi_{1}^{2}$. Using the chi-squared moment-generating function:

$$
\begin{aligned}
& =\left(1-2 \cdot \frac{\lambda^{2}}{2}\right)^{-1 / 2} \\
& =\frac{1}{\sqrt{1-\lambda^{2}}}
\end{aligned}
$$

which is bounded provided $\lambda<1$. Our main result now follows from Lemma 4.

References

[FP06] D. Féral and S. Pećhé. The largest eigenvalue of rank one deformation of large Wigner matrices. Communications in Mathematical Physics, 272(1):185-228, 2006.
[Jan95] S. Janson. Random regular graphs: asymptotic distributions and contiguity. Combinatorics, Probability and Computing, 4(04):369-405, 1995.
[KXZ16] F. Krzakala, J. Xu, and L. Zdeborová. Mutual Information in Rank-One Matrix Estimation. arXiv:1603.08447, March 2016.

