Thermoforming Process

(Vacuum Forming Process)

Market Research Conceptual Design for Manufacture Design for Manufacture Assembly and Joining Welding Bolting Bolting Bonding Systems & Enterprise Bonding Soldering Processes Assembly and Joining Injection molding Rapid prototyping Stamping Chemical vapor deposition

Outline

- Overview
- Process Steps
- Process Equipment
- Design for Manufacturing

3

Overview

- Polymers thermoplastic
- Applications
 packaging, container, housing, etc.
- Materials
 ABS (~15%), PMMA (~15%), PS (~20%)

Other Heating Methods

- Convection Heating
- Contact Heating

10

Forming: Vacuum or Pressure

- Positive air pressure (14.5 to 300 psi)
- Faster mold cycle
- Lower temperatures with higher forming pressure

Forming: Match Mold

13

Plug-assist Vacuum Forming

- A: preheated sheet prior to forming
- B: sheet stretched with moving plug
- C: sheet vacuum formed into female cavity
- b preheated, clamped, sheet a - plug
- c female mold with vacuum holes
- d moving plug e - vacuum

14

Plug-assist Pressure Forming

- A: preheated sheet prior to forming
- B: sheet stretched with mechanical plug advance
- C: sheet air-pressure formed into female mold
- a pressure box
- b plug
- c preheated, clamped sheet
- d female mode with vent holes
- e moving plug
- f applied air pressure
- g venting air

15

Free Blowing

- A: preheated sheet prior to forming
- B: free-blown sheet: bubble height determined by photocell monitor.
- a preheated clamped sheet
- b pressure box
- c proportional photocell monitor
- d signal to air pressure f - air pressure

e - hold-down ring

Billow Vacuum Forming

- A: preheated sheet prior to forming
- B: sheet prestretched with air press Better thickness uniformity
- C: sheet vacuum formed into fema Deep draw
 - Longer cycle time
- a hold down ring
- b prehea<mark>ted diamped sheet</mark>
- c female mold with pressure/vacuum holes,
- d applied pressure
- e vacuum

17

Vacuum Reverse Draw with Plug-assist

- A: preheated sheet prior to forming
- B: formation of bubble
- C: plug moves into billow, air pressure continues
- D: vacuum applied pulling sheet into female mold
- a) plug, b) hold-down ring, c) preheated, clamped sheet, d) female mold,
- e) plug motion activated when bubble touches it, f) applied air pressure,
- g) continuing air pressure as plug advances, h) vacuum

10

Pressure Reverse Draw with Plug-assist

- A: preheated sheet prior to forming
- B: sheet prestretched into bubble with air pressure
- C: plug moves into sheet while air pressure still on
- D: sheet vacuum formed into female mold
- a) pressure box, b) plug, c) preheated, clamped, sheet, d) female mold with air pressure/vacuum holes, e) plug begins to move when billow touches it, f) applied air pressure, g) air pressure, h) plug moving into billow, i) continuing air pressure, j) vacuum

Forming Mechanism

Forming Considerations: Part Thickness Draw ratio - depth of part / width of part Draw ratio should be less than - 2:1 for female molds - 7:1 for male mold Area ration for blank sheet size estimation Draft angle: .5 to 5 degree

Design for Thermoforming

- Uniform thickness (~10%)
- Simpler shapes (avoid under cuts, etc.)
- Rounded corners (1t min, 4t ideal)
- Draft angle for removal (.5 5 degree)
- Depth of draw ratio (< 1:1)
- Stretch ratio (< 2:1)
- Shrinkage
- Design for holes and trim lines

29

Rate - Thermoforming

- Development time
 - · Die design time : a few days to weeks
- Cycle time
 - · Shorter than melting process: 10 to 60 seconds
- Production rate
 - · Usually very fast : but vary with batch size

31

Cost - Thermoforming

- Initial Cost
 - Equipment cost is low to moderate, but can be high if automated
 - Tooling cost is low to moderate depending on the complexity
- Variable Cost
 - · Labor cost is low to moderate
 - Moderate to low material utilization : unformed part of the sheet are lost

30

Quality - Thermoforming

- Dimensional
 - Affected by viscoelastic spring back: rate of change affects spring back
 - Shrinkage
 - Surface finish is good and related to the condition of mold surface
- Mechanical Property
 - · Good toughness : orientation related
- Defects
 - Corners tend to become excessively thinner: pre-stretch in opposite direction and apply pressure

Flexibility - Thermoforming

Moderate : Die needs to be changed