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SOLUTIONS: Problem Set #3 
 
 
 
Problem 1 
Nise 4 – 26 
 

 
a) Find the Transfer function )(/)()( 2 sTssG θ= . 
 
First we need to find the equations of motion.  Notice that the rotational spring and 
the inertia can move at different angles.  Therefore we will need two equations to get 
our Transfer function equation.  (If you have trouble picturing this, it might help to 
change it a translational system). 
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Substituting for the parameters shown, and rearranging the equations we get:  
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Now we can substitute the second equation into the third and we get.  
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b) The percent overshoot, setting time and peak time for )(2 tθ . 
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In order to find any of these parameters it is first necessary to find ζ and ωn.  Which 
are the two ‘physically meaningful’ parameters necessary to describe a second order 
system.  By knowing these two values you should be able to fully understand the 
behavior of the system.   
 
The general second order system looks like:  
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Notice that this system has a total gain of 1.   
 
Comparing our system to the general second order system we can find that: 
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Since the system is a second order system, now we can easily find the values asked 
for.  The following equations are presented in the book along with the derivation. 
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Problem 2 
 
For each step responses find the transfer function.  
 
a) The most important thing to note here is this is a FIRST ORDER SYSTEM 
NOT and overdamped second order system.  The major clue for this is that the initial 
slope of the response is non-zero.  Compare them to b) and c) which both have zero 
initial slope.   
 
Now since we assume this system is first order.  We know that we know that there is only 
one parameter we want to estimate, namely the time response, τ.  
 

 
 
There are several relationships that are defined by the time constant.  τ = time it takes for 
the response to reach 63% of the final value,  4τ = settling time (time it takes for the 
response to stay within 2% of the final value, or 2.2τ = rise time (time it takes to go from 
0.1 to 0.9 of final value.  Any of these can be used to deduce the time constant.  Choose 
the one that you think is easier to measure.  
 
For this case I chose the time it takes to reach 63% of final value (which would be = 
1.26), and I approximated this value to be τ ≅ 0.025.  We know that the general first order 
system for a system looks like this: 
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We want know that a = 40, and K/a = 2 since this is the final value of the response. 
Therefore the transfer function is: 
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b) Now, this is a second order UNDERDAMPED system, which you should be able 
to tell by seeing the decaying oscillations. If you are confused about this look a the 
pictures in p. 190 of Nise.   
 
 

 
For a second order system we need to find ζ and ωn in order to find the transfer function 
of the system.  Since we know that the percent overshoot is a function of only ζ, we can 
find the %OS and work backward to get ζ.  
First we estimate the percent overshoot to be:  
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Then we can easily find ζ:   
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Eq (4.39) 

 
Now that we know ζ we need to find ωn.  Peak time and settling time both relate these 
two values, so we choose whichever is easiest to get from the graph.   
So we estimate the settling time to be, Ts = 2.8 s. Therefore.  
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Eq (4.42) 

 
Now we know ζ and ωn, and can plug these values into the general second order 
equation,  
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since this response does not have unity gain, we need to find a value for K that will give 

us a final value of 11.  Namely: 112
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c) Here we once again, have an underdamped second order system.  So I will skip 
the steps that were described in detail in part b.   

 
Again we calculate ζ from the %OS.  %OS = 40%, so ζ = 0.28.  
 
Now we will use peak time to calculate ωn.   
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Since we do have a final value of 1, the transfer function is:  
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Problem 3 
 
Heading Angle Problem  
 
a) Step Response 
 
Given Transfer function is:  
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where, K = 0.001, a = 0.001, b = 1.  
 
Step Response is given by: 
 









+
+−

=Ω −

ss
sLt 1
001.0(

)1(001.0)( 1  

Separating the fraction through partial fractions we get  
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Now taking the inverse Laplace transform we get: 
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Note that at t = 0, the angle rate is negative.  

 
 
 
 

If you have any questions on 
the step response or partial 
fractions please look at the 
solutions for PS#2 again. 
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b) Heading angle 
 
The heading angle as a function of time is given by the integration of the heading angle 
rate.  
 

∫ −−= dte t
H ]001.11[ 001.0θ  

Cet t
H ++= − 001.01001θ  

since The heading angle is zero initially, θH (0) = 0.  We find that C = -1001. So,  
 

10011001 001.0 −+= − t
H etθ  

The following plot shows the Heading angle as a function of time.  
 

 
c) Notice that initially the ship is going to be going at an angle in the opposite 
direction of the specified angle.  This is what makes the response non-intuitive.  Imagine 
you want to go right, the ship will begin to turn left initially and then turn right, after a 
few seconds.  
 
d)  How long to reach a constant turning rate.  
   
Steady State achieved in 4τ, where τ is 1000, so constant rate after 4000 seconds.  
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e) Block Diagram 
Notice that since our transfer function  
 
 
 

 
The characteristic equation for the closed loop transfer function is given as, 
 

 
 

 
 
so the characteristic equation is given as, 

 
 
 
f.) Value for K  to give an acceptable response… 
 
We want the middle term to be positive in order to have a stable system.  Therefore, 
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( )0.001 0.001 0cK− × >  
 

so,  
 

∴( )1 0cK− >  
 

Since Kc must be positive, we need to have a gain:  
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Problem 4 

 
 
a.)   Full non-linear equation: 
Doing a torque balance around the pivot point we obtain the following  

τθθθ =++ cos
2
LmgBJ &&&  

 
b.)  Linear equations for the 3 conditions listed:   
 
The equation above is non-linear because of the cosine term.  So we will linearize this 
term of the equation. 
 
 i.)  arm pointing vertically down, 

 
Using the following equation we can get the linear form for cos (θ) when θ = -90. 
:  
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Following the example in the book we let 90−= δθθ , then we substitute into the 
equation above.  Where f(x) = cos (δθ - 90), f (x0) = cos (-90), (x – x0) = δθ 
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NOTE:  The problem set shows the 
torque τ in the opposite direction, but 
I sent out an email to have τ and θ in 
the same direction.  However, I 
solved it here in the correct 
configuration.  

90oθ = −
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δθδθ =− )90cos(  
Therefore the full linear equation for this position is:  

 

τθθθ =++
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ii.)  arm pointing vertically up, 
 
This linearization can be done exactly as that done in part ii), so I will skip the 

details.  So for,  

 
The linearized form is:  

τθθθ =−+
2
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iii.)  arm horizontal, 
 

 
Now the linearization of cos θ around θ = 0, is just 1 so for the arm downward 

this is the linearized equation of motion: 

2
LmgBJ −=+ τθθ &&&  

Notice that there is an additional torque mgL/2 which is acting on the system. 
  

c.)   Comparing the 3 motions: 
 
We have not done a rigorous study on stability yet. But  you should be able to physically 
understand what is happening here, by looking at the equation of motion and the transfer 
function. So, for small motions about the position specified that system will have the 
following motions:  
 
 i.)  –  stable oscillations 
 ii.)  –  unstable oscillations 
 iii.)  –  behaves like a mass-damper system with a torque from gravity 
 
d.)   Controller 

Note that this term should 
now have a minus sign

0oθ =

90oθ =
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A simple proportional control is applied to the system as shown: 

 
In order to analyze the behavior we must get the characteristic equation, for each possible 
position.  Which is given by:  
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 i.)  For the first system with the following G(s): 
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Characteristic equation for will be given by 
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ii.) For the second system: 
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iii.) For the last system  
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And the natural frequency is  
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Now, we are asked to find the values of Kc for which all the natural frequencies are the 
same.   
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For this to be true Kc must have the following values.  

2/

0

3,

2,

1,

mgLK
mgLK

K

c

c

c

=

=

=

 

 
 
 
e.)   The gains are different because the effect of gravity at each position is different. 
Notice that the greatest gain is necessary for the vertical arm. And that for the horizontal 
arm the gain will equal the torque applied by gravity. 
 
f.)   A good control system will have a continuously varying gain as the angle of the 
bar changes.  i.e.: )(θfKc =  
 
 


