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SOLUTIONS: Problem Set #5

Problem 1

Routh-Hurwitz table for the open loop system shown

2s* +3s5+8
G(s)=
) st 425 +45* +65+8
s’ 1 4 8
s’ 2 ] 6 3 0
1 4 J
§2 . 8 0
L
s! -5 - 0 0
g’ 8 0 0
This tells us that there are 2 poles in the RHP
Problem 2
+ 4
I >

- s(s*+5° +65> +65+2)

The characteristic equation for the closed loop transfer function given by the block
diagram above is:
S +5P 4657 +65°+2s5+4




S 1 6 2
s* 1 6 4
5 0—>¢ -2 0
2+6
2 id 4 0
e
2
J — (4> +4+12¢) 0 0
2+6¢&
g’ 4 0 0
>0 <0
g 1 + +
st 1 + +
= & + -
) 2+6¢&
s + -
e
2
gl —(4e” +4+12¢) ) N
2+6¢
s’ 4 + +

Note that whether epsilon is greater than zero or less than zero, you still get two poles on
the right hand plane. You should always get the same result for these two conditions.

R(s) + E(s C(s
(5) %g{s} G(s) G)

Problem 3

G(s) = K
s(s+D(s+2)(s+9)
Closed loop transfer function:
K
T(s)=

() s 485 +17s* +10s+ K
st 1 17 K
= 8> 4 10->5 0
s 63/4 > 63 K > 4K 0
s! 315 - 16K 0 0
s° 4K 0 0

For stability we must have:




4K >0 and (315-16K)>0
solving for both equations we get:

0 <K <315/16
b) Marginal stability implies that there is a row of zeros. This occurs for s' when
K=315/16
C) When the system is marginally stable our transfer function looks like this:
315/16

T(s)=
() s +8s° +17s* +10s +315/16

To find all the poles of the system at this point we need to factor the denominator. This
task becomes significantly simpler since we know that this value of K makes the row

1
s =0.

s* 1 17 315/4
g 4 5 0
s 63 315/4 0
s' 0 0 0
g’ 315 0 0

So, we know that the coefficients in the row s> form a polynomial that will be a factor of
the original denominator. This polynomial is:
63s” +315/4

Now we can get the other factor of the equation by dividing the original polynomial.
Finally we get:

(63s® + 315/4)(1/63s” + 8/63s + 1/4)

So the poles can now be found easily through the quadratic function.

P, =tiv5/4

D34 =—45,-3.5

Problem 4

- s2+3s+2

S+a




The first step here is to find the closed loop transfer function for the system, which

reduces to:
20a
T(s)=— 2
s +@B+a)s”+(2+3a)s+22a
s’ 1 2+3a
s 3+a 22a
2 —
gl 3a“—-1la+6 0
3+a
s’ 22a 0

For the system to be stable we must have:
3+a>0

3> —11la+6
_— >

3+a
22a>0

0, and

So, a > 0 from the third line, and (3a—2)(a—3)>0
From the second line: a> 3, and a<2/3
Together the requirements are:

O0<a<2/3,anda>3

Problem 5

There are two major ways of solving this problem. The first (which many of you used) is
to get all the equations that are given and those derived from the diagram and solve the

system of equations.

Since most of you did it this way, I am going to show it using block diagrams which is a

bit cleaner way to do it.

The first thing to do is recreate the block diagram that is described by the picture shown.

Th -Tj . .
’th h ] BJ 6] = er Tl‘ er

F

—> Gi(s) > ki Ga(s)
+ +

0;

ke

>

K.




The block diagram as shown has all the connections described by the equations. For
instance notice that 7, = —k (6, —6,), is created around the second summing junction.

Gi(s) and Gy(s) represent the characteristic of each arm. For G,(s) we need to find the
transfer function betweenty, - t; and 0;, while for G,(s) we need to find the transfer
function between t, and 0.

Doing a sum of forces around the rods we get:

Zr:Jé

F
T
Th T
r, -7, =J,0, J,0, =1, ~F()
; o F=K@01
l(S) - J S2 ) _ 1
J.s"+K,

Now we can start simplifying the block diagram to get the response. The easiest way to

do this is to find the transfer function E and then find the transfer function ,95 and then

Th j

0.
divide the first one by the second to get —-

Th
To get this transfer function first reduce the inner feedback system and then the outer
feedback system.

kK,
F_ sJ(s°),+K +k) k.K,
51y kK, S (s, + K, + k) +h K,
SzJj(szJ, +K,+k)

To get this transfer function first reduce the inner feedback system and then find the open
loop transfer function between the input and output.
F kK,

0, B (s*J. +K,+k,)

0, s’J +K, +k,

r, S, (K, +k)s%T, +kO Kk,




b) Control: Proportional and derivative control.

Th T 0; 0;- 0 Tr 0;
K(l+ks —» Gi(s) > k; Ga(s) » K.

ke

Here is the new block diagram including the proportional-derivative control. Now we are

0.
looking for the transfer function: —-. Again, we could reduce the block diagram to find
h

this transfer function. But for simplicity we should use the equation given:

7,(s) =K(1+k,5)[6,(s)—06,(s)]

which shows the relationship already in terms of 0y, i, and 0; so all we need to do is find
relationship between 1, and 6;. -- which is exactly what we did in part a.

So,

(s*J,J, + (K, +k)s* T, + kK k,)0,(s)
s’J + K, +k,

= K(1+k,9)[0,(5)~0,()]

(s* T, + (K, + k)52, +k K k) 0,(s) = K(s°J, + K, + k)1 + k,8)[6,(s)~0,(s)]

0.(s) K(s*J, +K,+k)1+k,s)
0,(s) (", J, +(K,+k)s’J, +k Kk, )+K(s*, +K, +k)1+k,s)

Now we look at this denominator to obtain stability conditions.
We simplify the denominator using the following given parameters:

J,=2,J, =1k =2,K, =8k =0.5

25" +2Kk,s* + (2K +10)s* +10Kk,s + (10K +38)



Now we can build the Routh Table:

s’ 2] QCK+10) > (K+5) HOK+8) > (5K+4)
s 2Kk, > 1 10Kk, > 5 0
s K 5K+4 0
s' -4/K 0 0
g 5K+4 0 0

Because K #0, k, # 0, we can factor out both of these values from the second line. As a

result notice that k, does not influence the stability.
This system is always unstable because s® and s' have conflicting requirements for K to

make their respective lines positive.

c) The modified diagram for the bilateral servo control is shown.

0 + X6-6, T 0,
G](S) » kr Gz(S)

Again, the first thing we do, is to find the transfer function between —, assuming that
Th

we have not yet applied the proportional-derivative control. which we will do in exactly

. . 0 .
the same method used in part a). by first finding the —- transfer function and then
[y

n

0.
finding the % and then divide the first one by the second to get —~

j 17



Moving k; and Gy(s) before the pickoff point makes this problem a lot simpler.

Now we are ready to apply the PD control:

K(1+ks)

0, + ¥0,-0, T 0
Gi(s) >k Ga(s) >
0;
kj
krGZ(S)
0, __KkG(s)
0, 1+kG,(s)
k.G
r Z(S) GI(S)
6, _ 1+k,G,(s)
- -
Th 1+ ker(s) GI(S) J
1+krG2(S) krGZ(S)
ﬂ_ l/st2
Ty 1 1 &
1+k,(1/J,s* +K,) J;s* 1
[ Js'+k +K,
t, JJ 5[0k +J (k + K]S+ kK,
0| + ¥ 0;-0, 7, 0
Gl(s) P kr GZ(S)
0;




We follow the same steps to get the new closed loop transfer function

0,(s) _

K(s’J, + K, +k)(1+k,s)

0,(s)  (s*J,J +[(K, +k)J, +kJ Is* +k,K,)+K(s*J, + K, +k)(1+ks)

The characteristic equation is now:

2s* + 2Kk, s’ + (2K +14)s* + 10Kk s + (10K +16)

The Routh table is similar to part b)

st 251 K+ > (K+7) (HOK+16) > (5K+8)
= 2Kk, > 1 10Kk, > 5 0
s K+2 5K+8 0
1 2
S 0 0
K+2
s° 5K+ 8 0 0

Now we can clearly see that for all positive gains K > 0, k,, > 0, the system will be stable.




