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SOLUTIONS: Problem Set #5  
 
 

Problem 1 
 
Routh-Hurwitz table for the open loop system shown 
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s4 1 4 8 
s3 2  1 6   3 0 

s2 
1

1
31
41

=
−

 
8 0 

s1 -5 0 0 
s0 8 0 0 

 
This tells us that there are 2 poles in the RHP 
 
 
 
 
 
Problem 2 
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The characteristic equation for the closed loop transfer function given by the block 
diagram above is:  
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Note that whether epsilon is greater than zero or less than zero, you still get two poles on 
the right hand plane.  You should always get the same result for these two conditions.  
  
Problem 3 
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Closed loop transfer function: 

Kssss
KsT

++++
=

10178
)( 234  

s4 1 17 K 
s3 8  4 10  5 0 
s2 63/4  63 K  4K 0 
s1 315 - 16K 0 0 
s0 4K 0 0 

 
For stability we must have:  
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4K > 0 and (315 – 16K) > 0 
solving for both equations we get:  

0 < K < 315/16 
 

b) Marginal stability implies that there is a row of zeros.  This occurs for s1 when  
K = 315/16 

 
c) When the system is marginally stable our transfer function looks like this: 
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To find all the poles of the system at this point we need to factor the denominator.  This 
task becomes significantly simpler since we know that this value of K makes the row  
s1 = 0.   

s4 1 17 315/4 
s3 4 5 0 
s2 63 315/4 0 
s1 0 0 0 
s0 315 0 0 

 
 
 
So, we know that the coefficients in the row s2 form a polynomial that will be a factor of 
the original denominator.  This polynomial is: 

63s2 + 315/4 
 
Now we can get the other factor of the equation by dividing the original polynomial. 
Finally we get: 
 

(63s2 + 315/4)(1/63s2 + 8/63s + 1/4) 
 
So the poles can now be found easily through the quadratic function.  
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Problem 4 
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The first step here is to find the closed loop transfer function for the system, which 
reduces to: 
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s3 1 2 + 3a 
s2 3 + a 22a 
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s0 22a 0 
 
For the system to be stable we must have: 
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22a > 0 
 

So, a > 0 from the third line, and (3a – 2)(a – 3) > 0 
 
From the second line:  a > 3, and a < 2/3 
Together the requirements are:  

0 < a < 2/3, and a > 3 
 

Problem 5 
 
There are two major ways of solving this problem.  The first (which many of you used) is 
to get all the equations that are given and those derived from the diagram and solve the 
system of equations.  
Since most of you did it this way, I am going to show it using block diagrams which is a 
bit cleaner way to do it.  
 
The first thing to do is recreate the block diagram that is described by the picture shown.  
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The block diagram as shown has all the connections described by the equations.  For 
instance notice that ),( rjjj k θθτ −−=  is created around the second summing junction.  
G1(s) and G2(s) represent the characteristic of each arm.  For G1(s) we need to find the 
transfer function betweenτh - τj and θj, while for G2(s) we need to find the transfer 
function between τr and θr. 
Doing a sum of forces around the rods we get:  
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Now we can start simplifying the block diagram to get the response.  The easiest way to 

do this is to find the transfer function 
h

F
τ

and then find the transfer function 
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F
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divide the first one by the second to get 
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To get this transfer function first reduce the inner feedback system and then the outer 
feedback system. 
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To get this transfer function first reduce the inner feedback system and then find the open 

loop transfer function between the input and output.  
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b) Control: Proportional and derivative control. 

 

 

 

 

 

 

 

 

 

 

Here is the new block diagram including the proportional-derivative control.  Now we are 

looking for the transfer function: 
h

j

θ
θ

.  Again, we could reduce the block diagram to find 

this transfer function. But for simplicity we should use the equation given: 
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which shows the relationship already in terms of θh, τh, and θj so all we need to do is find 

relationship between τh and θj.  -- which is exactly what we did in part a. 

So,  
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Now we look at this denominator to obtain stability conditions. 

We simplify the denominator using the following given parameters:  
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Now we can build the Routh Table: 

 

s4 2  1 (2K+10)  (K+5) (10K+8)  (5K+4) 
s3 2Kkv  1 10Kkv  5 0 
s2 K 5K+4 0 
s1 -4/K 0 0 
s0 5K+4 0 0 

Because 0,0 ≠≠ vkK , we can factor out both of these values from the second line.  As a 

result notice that kv does not influence the stability. 

This system is always unstable because s2 and s1 have conflicting requirements for K to 

make their respective lines positive. 

 

c) The modified diagram for the bilateral servo control is shown.  

 

 

 

 

 

 

 

 

 

Again, the first thing we do, is to find the transfer function between 
h
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, assuming that 

we have not yet applied the proportional-derivative control. which we will do in exactly 

the same method used in part a).  by first finding the  
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Moving kr and G2(s) before the pickoff point makes this problem a lot simpler.   
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Now we are ready to apply the PD control: 
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We follow the same steps to get the new closed loop transfer function 
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The characteristic equation is now: 
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The Routh table is similar to part b) 

s4 2  1 (2K+14)  (K+7) (10K+16)  (5K+8) 
s3 2Kkv  1 10Kkv  5 0 
s2 K+2 5K+8 0 

s1 
2

2
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 0 0 

s0 5K + 8 0 0 
 

Now we can clearly see that for all positive gains 0,0 >> vkK , the system will be stable.  

 


