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SOLUTIONS: Problem Set # 8 
 
  

Problem 1 Nise 8-25 
 
a)  Sketch the Root Locus 
 
Open loop transfer function: 
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You should be able to sketch the root locus as shown above by hand.  You must calculate 
the location and number of your asymptotes, but you may leave out characteristics that 
define your sketch such as breakaway/in points and departure/arrival angles.   
 



 
b)  Asymptotes 
 
Using Professor Asada's notation 
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Using Nise's notation: 
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Notice that these are equivalent.  So don’t get confused by the notation.  
 
c) Gain that makes system stable 
 
Using the Routh Hurwitz table:  
 
First obtain the characteristic equation is: 
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To for the range of stable K we must make a row of zeros.  
Solving the quadratic equation of s1 for K we get: 
 

7.75,6.115 −=K  
 
We can also get the point where the Root locus crosses the jω axis, by building the factor 
from the line s2.  We use 6.115=K , so the equation: 

02.4714.217 2 =+s  
 
will give the location of the poles at the imaginary axis, and the value of ω at this point 
is: 
 

47.1j±=ω  
 



d) Breakaway points:  
 
There are a few ways of getting the breakaway points.  The book shows how to do it 
using the maximum (breakaway) and minimum (break-in) value for K along the real 
segment where the root locus breaks.   
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Solving this equation becomes very impractical and should be done either with a 
graphing calculator or matlab.  Instead at this point it becomes easier to use matlab to plot 
the root locus and find the breakaway/in points.  
 
 

 
 
There are a few ways to get the breakaway/in points in matlab as well.  The simplest way 
is zooming in around the area.  You should also check out the command rlocfind it is 
very useful.  
 



The breakaway point between –2 and –4 is –2.53 
The breakaway point between –5 and –6 is –5.58 
 
There are no break-in points.  
 
e) K at 25% Overshoot.  
 
 
A 25% O.S. yields: 
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Graphically there will be constant %O.S of 25% along the line that goes through the 
origin with a slope of:  
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Now you need to find the point where the Root Locus intersects the line for ζ = 0.404.   



The best way to do this is by again using the command rlocfind.  Using rlocfind will give 
you the K value as well as the location of all the poles.   
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f) Higher order poles 
 
The poles p1,2 can be used for the second order approximations.  While poles p3,4 are the 
higher order poles when the system operates at 25% O.S. 
 
 
g) This second order approximation is not valid because there are two zeros on the 
right hand plane that will change the response.   
 
h) Step response.  
 
The step response given by the two dominant poles using the transfer function  
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HOWEVER: Using the step function on matlab we can see what the step response is for 
our system.  
 



 
As shown above, the approximation is NOT valid for our system.   
 
 
Problem 2 Nise 9 – 1 
 
Design a PI controller to drive the step response to zero for the unity feedback system 
with transfer function: 
 

)6)(3(
)(

++
=

ss
KsG  

 
The system should have a damping ratio: 

707.=ζ  
 
Compare compensated and uncompensated systems. Quickly sketching the root locus, it 
should look like: 

 
 
 



Now you should know that 707.=ζ m has a slope of  -1 as shown in the picture.  Given 
this simple geometry you can find the closed loop poles at this point to be  

ip 5.45.42,1 ±−=  
 
To drive the steady state error to zero we need to add a pole at zero.  In order to not 
change the transient response we add a zero close to the pole in order to cancel it out.  I 
am placing the zero at -0.3, just so that you see the effect of the zero, if instead I had 
placed it for instance at –0.01 the effect would be much smaller.    
 
We choose the PI controller to be: 
 
 
 
 
 
 
 
 
 
 
Now the new system we are analyzing is:  
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We plot this system into matlab and again find the point where the root locus intersects 

707.0=ζ  at the poles ip 42.441.42,1 ±−=  
 
Now we can compare the response for both the compensated and uncompensated 
systems: 
 
Characteristic Uncompensated Compensated 

Poles ip 5.45.42,1 ±−=  ip 42.441.42,1 ±−=  
Gain at poles K = 22.5 K = 22.5 

ζ 0.707 0.707 

Ts sec89.0
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Step Response for the 
Uncompensated system is: 

 

Step Response for the 
Compensated system with 
zero at –0.3. 
 
Not very good pole-zero 
cancellation 

 

Step Response for the 
Compensated system with 
zero at –0.01 is: 
 
Good pole/zero cancellation 

 
 
 



Problem 3 Nise 9-6 
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Operates dominant poles at ζ = 0.707.  
 
Design a PD controller so that the transient response will be reduced by half.  Use Matlab 
to plot the root locus.  

 
 
Using matlab we can find the point of intersection between the damping ratio and our 
closed loop poles.  Namely at a gain of 62.16=K , ip 04.104.12,1 ±−= while the higher 
order poles are at 29.43 −=p and 62.54 −=p .   

Now in order to reduce the settling time, 
n

sT ζω
4

=  , by a factor of 2, we need to increase 

nζω by a factor of two.  So we know our new pole location is: ip 08.208.22,1 ±−= .  The 
large x in the root locus shows this pole position.  We are now ready to impose PD 
control.  We have to place a zero along the real axis that will force the root locus to 
include the pole that we have found.  In order to do this we know that the sum of the 
angles from our chosen point to the open loop poles and zeros are  
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Now that we know the angle for zero we know that our guess was incorrect, since the 
angle is greater than 90, but regardless we can still get the correct answer.   
The zero location is given by:  
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Characteristic Uncompensated Compensated 

Poles ip 04.104.12,1 ±−=  ip 08.208.22,1 ±−=  
Gain at poles K = 16.62 K = 19.78 

ζ 0.707 0.707 

Ts sec85.3
04.1
4

=  sec93.1
08.2
4

=  

Kp 46.0
36

62.16
=  38.0

36
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The problem is that the steady state error has increased. 



Problem 4 
 
a) Solving the equations of motion 
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Here we replace y on the left equation to 
get the transfer function between τ and θ. 

Now we replace θ on the equation on the 
left to get the transfer function between τ 
and y 
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Two zeros, Four Poles NO zeros, Four Poles  

  
  

 
This is another example of collocated vs non-collocated systems.  Just like the quiz 
question and the example done in class.  There are two inertias connected by a spring.  
After PD control is applied you can see that when the control and sensor are on opposite 
sides (as in when you apply a torque and measure the position of the mass) you will get a 
very unstable system.  Whereas when the control and sensor are on the same side, a stable 

These above are 
the equations of 

motion. 
Now we can take 
the Laplace 
transform to find 
the transfer 
functions 



system will result.  The root locus clearly illustrates this even though we don't have exact 
values available.  
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Two zeros, Four Poles NO zeros, Four Poles 

  
Applying PD control we have a zero at -kd  

  
 


