Massachusetts Institute of Technology
 Department of Mechanical Engineering 2.010 Modeling, Dynamics, and Control III

Quiz \#1

March 19, 2002
3:00 pm - 4:30 pm
Close book. Two sheets of notes are allowed. Show how you arrived at your answer.

Problem 1

Consider a system with two feedback loops, as shown by the block diagram below.

Figure 1 Original block diagram
(1-a). Reduce this block diagram to the standard unity feedback system shown in Figure 2, and obtain the transfer function $G(s)$.

Figure 2 Reduced block diagram
(1-b). Obtain the open-loop poles and zeros of the system shown in Figure 2, and plot them on a complex plane. Is the open-loop system stable. Explain why.
(1-c). Using the Routh-Hurwitz stability criterion, obtain the range of feedback gain K to ensure the stability of the closed-loop system in Figure 2.

Problem 2

Space shuttles carry a remote manipulator system for various space missions. The figure below shows the schematic of a simplified one degree-of-freedom manipulator arm. The arm is driven by an actuator of rotor inertia J_{1} through mass-less spur gears of gear ratio $1: N$, (i.e. the radius of the actuator-side gear is 1 , while that of the arm side is N). The arm rotates about its shoulder joint having a torsional stiffness of K_{t}. The length of the arm is L and its inertia about the joint axis is J_{2}. The bearings holding the joint axis have a viscous damping of b, i.e., a drag moment proportional to the angular velocity, $-b \dot{\theta}_{2}$, acts on the joint axis. The arm is equipped with an optical range sensor measuring the arm tip position, y, relative to a fixture. A proportional feedback loop has been formed from the end point sensor, as shown in Figure 4. The transfer function $G(s)$ relates the arm tip position y to actuator torque τ. The proportional feedback gain is denoted k_{p}. Answer the following questions.

Figure 3 The schematic of one degree-of-freedom space shuttle manipulator

Figure 4 Proportional feedback of end point displacement y
(2-a). Obtain the equations of motion and show that the transfer function from actuator torque τ to the end point position y is given by the following equation:

$$
G(s)=\frac{y(s)}{\tau(s)}=\frac{K_{t} L N}{s\left[N^{2} J_{1} J_{2} s^{3}+N^{2} J_{1} b s^{2}+K_{t}\left(N^{2} J_{1}+J_{2}\right) s+K_{t} b\right]}
$$

For the following two questions, use the transfer function with non-dimensional numerical values given by

$$
G(s)=\frac{5}{s\left(s^{3}+12 s^{2}+66 s+132\right)}
$$

(2-b). As the proportional feedback gain k_{p} increased, the response of the system became oscillatory, and finally reached a marginally stable response. Find the gain k_{p} for which the system became marginally stable and obtain its oscillatory frequency.
(2-c). For gain $k_{p}=41$, the closed-loop poles are:

$$
p_{1,2}=-1 \pm j 2, \quad p_{3,4}=-5 \pm j 5
$$

Which pole(s) dominate a step response? What is the approximate settling time of the system?

